All-solid-state lithium-ion batteries with argyrodite solid electrolytes have been developed to attain high conductivities of 10 S cm in studies aiming at fast ionic conductivity of electrolytes. However, no matter how high the ionic conductivity of the electrolyte, the design of the cathode composite is often the bottleneck for high performance. Thus, optimization of the composite cathode formulation is of utmost importance. Unfortunately, many reports limit their studies to only a few parameters of the whole electrode formulation. In addition, different measurement setups and testing conditions employed for all-solid-state batteries make a comparison of results from mutually independent studies quite difficult. Therefore, a detailed investigation on different key parameters for preparation of cathodes employed in all-solid-state batteries is presented here. Employing a rational approach for optimization of composite cathodes using solid sulfide electrolytes elucidated the influence of different parameters on the cycling performance. First, powder electrodes made without binders are investigated to optimize several parameters, including the active materials' particle morphology, the nature and amount of the conductive additive, the particle size of the solid electrolyte, as well as the active material-to-solid electrolyte ratio. Finally, cast electrodes are examined to determine the influence of a binder on cycling performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866434 | PMC |
http://dx.doi.org/10.3390/nano13020327 | DOI Listing |
Nat Commun
January 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China.
The application of high-voltage positive electrode materials in sulfide all-solid-state lithium batteries is hindered by the limited oxidation potential of sulfide-based solid-state electrolytes (SSEs). Consequently, surface coating on positive electrode materials is widely applied to alleviate detrimental interfacial reactions. However, most coating layers also react with sulfide-based SSEs, generating electronic conductors and causing gradual interface degradation and capacity fading.
View Article and Find Full Text PDFNat Commun
January 2025
School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.
A pressing need for enhancing lithium-ion battery (LIB) performance exists, particularly in ensuring reliable operation under extreme cold conditions. All-solid-state batteries (ASSBs) offer a promising solution to the challenges posed by conventional LIBs with liquid electrolytes in low-temperature environments. In this study, leveraging the benefits of amorphous solid-state electrolytes (SSEs) xLiN-TaCl (1 ≤ 3x ≤ 2), we develop ASSBs capable of functioning effectively under extreme cold conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia.
All-solid-state batteries (ASSBs) with a garnet-type solid electrolyte have been considered promising alternatives to traditional batteries with a liquid organic electrolyte, due to their enhanced safety and ability to accommodate high energy density electrodes. In this study, we conducted a comprehensive investigation of the high-temperature chemical compatibility between the garnet-like LiGaLaZrO (Ga-LLZO) electrolyte and high-energy-density Li-rich layered LiNiMnO cathode (LNM). Our findings suggest that a high temperature reaction between the Li-rich cathode and Ga-LLZO occurs at 700-900C depending on the form of reactants.
View Article and Find Full Text PDFNat Commun
January 2025
Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, USA.
Chem Commun (Camb)
January 2025
School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310058, China.
Side reactions between electrolyte and anode hinder the application of solid-state batteries. Here, a polymer-containing composite solid-state electrolyte (LiPSCl@PCSSE) was obtained through polymerization on LiPSCl. The novel electrolyte was indicated to inhibit side reactions, and the pouch cell showed excellent performance, demonstrating its practical application owing to the employment of LiPSCl@PCSSE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!