Carbon dioxide (CO) photoreduction to high-value products is a technique for dealing with CO emissions. The method involves the molecular transformation of CO to hydrocarbon and alcohol-type chemicals, such as methane and methanol, relying on a photocatalyst, such as titanium dioxide (TiO). In this research, TiO nanosheets (TNS) were synthesized using a hydrothermal technique in the presence of a hydrofluoric acid (HF) soft template. The nanosheets were further composited with graphene oxide and doped with copper oxide in the hydrothermal process to create the copper-TiO nanosheets/graphene oxide (CTNSG). The CTNSG exhibited outstanding photoactivity in converting CO gas to methane and acetone. The production rate for methane and acetone was 12.09 and 0.75 µmol h g at 100% relative humidity, providing a total carbon consumption of 71.70 µmol g. The photoactivity of CTNSG was attributed to the heterostructure interior of the two two-dimensional nanostructures, the copper-TiO nanosheets and graphene oxide. The nanosheets-graphene oxide interfaces served as the n-p heterojunctions in holding active radicals for subsequent reactions. The heterostructure also directed the charge transfer, which promoted electron-hole separation in the photocatalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9860753PMC
http://dx.doi.org/10.3390/nano13020320DOI Listing

Publication Analysis

Top Keywords

carbon dioxide
8
titanium dioxide
8
nanosheets/graphene oxide
8
graphene oxide
8
methane acetone
8
oxide
6
photocatalytic conversion
4
conversion carbon
4
dioxide
4
dioxide fuels
4

Similar Publications

Dry ice is one of the world's most in-demand commodities for cold-chain distribution of temperature-sensitive products. It offers an effective cooling solution without requiring mechanical refrigeration or specialized equipment. Dry ice is commonly produced as pellets and blocks.

View Article and Find Full Text PDF

This study was intended to provide a novel process that fills a knowledge gap in relation to the enhancement of pulses utilization. The primary goal was to develop an experimental framework for using a high-pressure supercritical fluid extruder (SCFX) as a continuous bioreactor to produce off-flavor reduced and functionally superior pulse flours and protein concentrates in a single step. The current study focused on using SCFX processing to remove off-flavor from pulse flour and protein concentrates, enhancing the quality, acceptability, and marketability of pulse-based products.

View Article and Find Full Text PDF

Mechanistic Understanding of Dissociated Hydrogen in Cu/CeO-Catalyzed Methanol Synthesis.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.

The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.

View Article and Find Full Text PDF

Photoinduced formation of a platina-α-lactone - a carbon dioxide complex of platinum. Insights from femtosecond mid-infrared spectroscopy.

Phys Chem Chem Phys

January 2025

Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.

The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.

View Article and Find Full Text PDF

In order to lower total energy consumption, this study focuses on optimizing energy use in refinery boilers. Using Aspen HYSYS simulations and modeling approaches like Artificial Neural Networks (ANNs) and Response Surface Methodology (RSM), data from 579 days of boiler operation was gathered and examined. Radial Basis Function (RBF) and Multi-Layer Perceptron (MLP) techniques were used in the ANN modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!