Pressure sensors urgently need high-performance sensing materials in order to be developed further. Sensitivity and creep are regarded as two key indices for assessing a sensor's performance. For the design and optimization of sensing materials, an accurate estimation of the impact of several parameters on sensitivity and creep is essential. In this study, sensitivity and creep were predicted using the response surface methodology (RSM) and support vector regression (SVR), respectively. The input parameters were the concentrations of nickel (Ni) particles, multiwalled carbon nanotubes (MWCNTs), and multilayer graphene (MLG), as well as the magnetic field intensity (B). According to statistical measures, the SVR model exhibited a greater level of predictability and accuracy. The non-dominated sorting genetic-II algorithm (NSGA-II) was used to generate the Pareto-optimal fronts, and decision-making was used to determine the final optimal solution. With these conditions, the optimized results revealed an improved performance compared to the earlier study, with an average sensitivity of 0.059 kPa in the pressure range of 0-16 kPa and a creep of 0.0325, which showed better sensitivity in a wider range compared to previous work. The theoretical sensitivity and creep were relatively similar to the actual values, with relative deviations of 0.317% and 0.307% after simulation and experimental verification. Future research for transducer performance optimization can make use of the provided methodology because it is representative.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862774PMC
http://dx.doi.org/10.3390/nano13020298DOI Listing

Publication Analysis

Top Keywords

sensitivity creep
20
sensing materials
12
sensitivity
7
creep
6
modeling optimization
4
optimization sensitivity
4
creep multi-component
4
multi-component sensing
4
materials pressure
4
pressure sensors
4

Similar Publications

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

The smart labels prepared via the casting method and molten 3D printing method have a long heating time at high temperature and a dense network structure, resulting in a decrease in the color response ability of the labels. Therefore, this study uses a nonphase change foam 3D printing method with a shorter heating time to improve the color sensitivity of smart labels. By the pH driving method, the blending and pregelation of sodium alginate (Alg) can extend the drainage time of the interfacial film to the maximum extent, thus further improving the foam stability of egg white protein (EWP) and endowing the interfacial adsorption layer with better flexibility and fluidity.

View Article and Find Full Text PDF

Background: Experimental knee implant wear testing according to ISO 14243 is a standard procedure, but it inherently possesses limitations for preclinical evaluations due to extended testing periods and costly infrastructure. In an effort to overcome these limitations, we hereby develop and experimentally validate a finite-element (FE)-based algorithm, including a novel cross-shear and contact pressure dependent wear and creep model, and apply it towards understanding the sensitivity of wear outcomes to the applied boundary conditions.

Methods: Specifically, we investigated the application of in vivo data for level walking from the publicly available "Stan" data set, which contains single representative tibiofemoral loads and kinematics derived from in vivo measurements of six subjects, and compared wear outcomes against those obtained using the ISO standard boundary conditions.

View Article and Find Full Text PDF

Single-pier, dual-bearing bridges are susceptible to effects such as concrete creep, thermal expansion, and uneven foundation settlement. When combined with eccentric loading from heavy vehicles, these factors collectively can significantly increase the risk of bridge overturning. To address this risk, a comprehensive analysis of the bridge overturning mechanism was conducted.

View Article and Find Full Text PDF

To improve the performance of AlCoCrFeNi eutectic high-entropy alloys (EHEA) to meet industrial application requirements, ZrAlCoCrFeNi high-entropy alloys (x = 0, 0.01, 0.05, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!