Cellular compartmentalization plays an essential role in organizing the complex and multiple biochemical reactions in the cell. An artificial compartment would provide powerful strategies to develop new biochemical tools for material production and diagnosis, but it is still a great challenge to synthesize the compartments that encapsulate materials of interest while controlling their accurate locations, numbers, and stoichiometry. In this study, we evaluated chemical characteristics of a liposome-encapsulated compartment, which has great potential to locate various materials of interest with precise control of their locations and numbers in the compartment. A nanoliposome was constructed inside a ring-shaped DNA origami skeleton according to the method of Yang et al., and further equipped with a double-stranded DNA platform to assemble molecules of interest in the nanoliposome. Upon formation of the nanoliposome, a pH-sensitive fluorophore on the bridged platform showed little or no response to the pH change of the outer buffer, ensuring that the molecules assembled on the platform are effectively shielded from the outer environment. The ring-shaped DNA skeleton equipped with a double-stranded DNA platform allows spatial assembly of several functional molecules inside the nanoliposome to isolate them from the outer environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864194 | PMC |
http://dx.doi.org/10.3390/molecules28020911 | DOI Listing |
Food Chem
December 2024
Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China. Electronic address:
Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran. Electronic address:
In this study, the effects of chitosan-coating on maintaining the integrity and stability of the membrane, structural, and morphological changes, and the release of loaded peptides inside nanoliposomes during various in vitro release, thermal, freeze-thaw, shear, and dehydration (spray-drying) tensions were evaluated. Among different peptidic fractions (100, 30, and 10 kDa), the Arthrospira derived PF-30 kDa showed a higher nutritional and biological value. PF-30kDa was loaded successfully (EE ~ 90 %) inside nanoliposomes (NLs) and its stabilization was done with chitosan coating (0.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:
Bemisia tabaci poses a severe threat to plants, and the control of B. tabaci mainly relies on pesticides, which causes more and more rapidly increasing resistance. β-Caryophyllene is a promising ingredient for agricultural pest control, but its feature of poor water solubility need to be improved in practical applications.
View Article and Find Full Text PDFComput Biol Med
September 2024
Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Oncology, The University of Texas at Austin, Austin, TX, 78712, USA; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78712, USA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
Background: Proper catheter placement for convection-enhanced delivery (CED) is required to maximize tumor coverage and minimize exposure to healthy tissue. We developed an image-based model to patient-specifically optimize the catheter placement for rhenium-186 (Re)-nanoliposomes (RNL) delivery to treat recurrent glioblastoma (rGBM).
Methods: The model consists of the 1) fluid fields generated via catheter infusion, 2) dynamic transport of RNL, and 3) transforming RNL concentration to the SPECT signal.
Bioresour Bioprocess
December 2023
Research Institute of Food Science and Technology (RIFST), Km 12 Mashhad-Quchan Highway, PO Box: 91895-157-356, Mashhad, Iran.
This study aimed to produce bioactive peptides from navy-bean protein with alcalase and pepsin enzymes (30-300 min) and to load them into a nanoliposome system to stabilize and improve their bioavailability. The degree of hydrolysis and biological activities (scavenging of DPPH, OH, and ABTS free radicals, reducing power, and chelating metal ions) of navy-bean protein were affected by the type of enzyme and hydrolysis time. The average particle size (83-116 nm), PDI (0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!