In the preparation of a superamphiphobic surface, the most basic method is to reduce the surface free energy of the interface. The C-F bond has a very low surface free energy, which can significantly change the wettability of the solid-liquid interface and make it a hydrophobic or oleophobic, or even superamphiphobic surface. Based on the analysis of a large number of research articles, the preparation and application progress in fluoropolymer emulsion were summarized. After that, some corresponding thoughts were put forward combined with our professional characteristics. According to recent research, the status of the fluoropolymer emulsion preparation system was analyzed. In addition, all related aspects of fluoropolymer emulsion were systematically classified in varying degrees. Furthermore, the interaction between fluoropolymer structure and properties, especially the interaction with nanomaterials, was also explored. The aim of this review is to try to attract more scholars' attention to fluorocarbon interfacial materials. It is expected that it will make a certain theoretical and practical significance in the preparation and application of fluoropolymer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866989 | PMC |
http://dx.doi.org/10.3390/molecules28020905 | DOI Listing |
Environ Sci Pollut Res Int
December 2024
Institute of Biosystem Engineering, Faculty of Engineering, University of Szeged, Moszkvai Blvd. 9, HU-6725, Szeged, Hungary.
This comparative study investigates the modification of polyvinylidene fluoride (PVDF) membranes with different nanoparticles (TiO or TiO-based composites containing BiVO and/or CNT), using three distinct methods (blending, coating, and grafting) and polyvinylpyrrolidone (PVP). The objective was to enhance the photocatalytic and filtration performance for the separation of oil-in-water emulsions. Regarding the UV activity, the PVDF-TiO/CNT/PVP-coated membrane presented the best performance.
View Article and Find Full Text PDFChemosphere
November 2024
Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India. Electronic address:
Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps.
View Article and Find Full Text PDFACS Appl Bio Mater
October 2024
School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
Expanded polytetrafluoroethylene (ePTFE) failed to achieve clinical application in the field of small-diameter blood vessels due to its lack of elasticity in the circumferential direction and high stiffness. Excellent multidirectional elasticity and dynamic compliance matching with natural blood vessels are important means to solve the problem of acute thrombosis and poor long-term patency. Herein, novel PTFE spinning blood vessels were prepared by the PTFE emulsion electrospinning process, which not only presented good bidirectional elasticity but also promoted the adhesion and proliferation of endothelial cells and induced the contractile expression of SMCs.
View Article and Find Full Text PDFJ Chromatogr A
November 2024
The Chemours Company, 201 Discovery Blvd, Newark, DE, USA. Electronic address:
Recent advances in fluoropolymer polymerization have focused on replacing perfluorinated polymerization aids (PAs) with hydrocarbon-based alternatives. Hydrocarbon PAs are vulnerable to fluorinated radicals during polymerization, leading to the creation of hundreds of process-specific polyfluorinated residuals. These residuals, which include low molecular weight extractable or leachable impurities, are challenging to detect at trace levels.
View Article and Find Full Text PDFChemosphere
September 2024
Organic Materials and Fiber Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-dong, Deokjin-gu, Jeonju, Jeollabuk-do, 54896, Republic of Korea. Electronic address:
Organic pollutants, such as toluene and xylene, in industrial wastewater negatively impact the environment. Membrane treatment is one of the best methods to reduce impurities in wastewater. Existing membranes that coat the water surface with hydrophilic material only effectively resist the initial fouling, resulting in poor oil and water selectivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!