Molecular switches which can be triggered by light to interconvert between two or more well-defined conformation differing in their chemical or physical properties are fundamental for the development of materials with on-demand functionalities. Recently, a novel molecular switch based on a the azodicarboxamide core has been reported. It exhibits a volume-conserving conformational change upon excitation, making it a promising candidate for embedding in confined environments. In order to rationally implement and efficiently utilize the azodicarboxamide molecular switch, detailed insight into the coordinates governing the excited-state dynamics is needed. Here, we report a detailed comparative picture of the molecular motion at the atomic level in the presence and absence of explicit solvent. Our hybrid quantum mechanics/molecular mechanics (QM/MM) excited state simulations reveal that, although the energy landscape is slightly modulated by the solvation, the light-induced motion is dominated by a bending-assisted -type motion independent of the solvation. To support the predicted mechanism, we simulate time-resolved IR spectroscopy from first principles, thereby resolving fingerprints of the light-induced switching process. Our calculated time-resolved data are in good agreement with previously reported measured spectra.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863296PMC
http://dx.doi.org/10.3390/molecules28020816DOI Listing

Publication Analysis

Top Keywords

molecular switch
12
molecular
5
modus operandi
4
operandi pedalo-type
4
pedalo-type molecular
4
switch insight
4
insight dynamics
4
dynamics theoretical
4
theoretical spectroscopy
4
spectroscopy molecular
4

Similar Publications

Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer that is notably associated with a high risk of lymph node metastasis, a major cause of cancer mortality. Current therapeutic options remain limited to surgery supplemented by radio- or chemotherapy; however, these interventions often result in high-grade toxicities. Distant metastasis significantly contributed to the poor prognosis and decreased survival rates.

View Article and Find Full Text PDF

Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.

View Article and Find Full Text PDF

Engineering thermostable fluorescent DNA aptamer for the isothermal amplification of nucleic acids.

Biosens Bioelectron

January 2025

Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:

Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.

View Article and Find Full Text PDF

A new Donor-Acceptor type pyrazinacene derivative (1) featuring strong ICT was synthesized by linking electron-donating triphenylamine (TPA) and electron-accepting CN groups via a pyrazinacene core. The compound exhibits a dramatic color change from greenish blue to red-violet upon selective recognition of naphthalene (3) to form a 1:1 co-crystal (1•3). This color change is induced by intermolecular CT between pyrazinacene and naphthalene's aromatic moieties, driven by π-hole···π interactions.

View Article and Find Full Text PDF

In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!