Synthesis of anticancer substances and studying their binding abilities towards human serum proteins as carriers are important parts of pharmaceutical and medical sciences development. The presented work is a continuation of studies of quinobenzothiazine derivatives binding with serum proteins. The main aim of this work was a spectroscopic analysis of second from benzothiazinium derivatives salt, 9-fluoro-5-alkyl-12(H)-quino [3,4-b][1,4]benzothiazinium chloride (Salt2), its interaction with carrier proteins, i.e., human serum albumin (HSA), α-acid glycoprotein (AGP), human gamma globulin (HGG), and the study of protein secondary and tertiary structure changes using spectroscopic techniques (spectrofluorescence, UV-Vis and circular dichroism CD spectroscopy). In order to mimic in vivo conditions, control normal serum (CNS) was used. Using the Klotz method, both binding constants (K [M]) and the number of binding classes (n) were calculated. In addition, the percentage of displacement of binding site markers from HSA and AGP molecules has been defined. Based on the obtained data, it can be concluded that the main binding protein for Salt2 is AGP. HSA and HGG are also involved in the distribution of the studied substance in the bloodstream. Moreover, Salt2 very slightly interacts with CNS, which can cause strong therapeutic as well as toxic effects. The analysis of CD spectra confirms that there are no changes in the secondary structure of the main binding proteins in the presence of Salt2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865466PMC
http://dx.doi.org/10.3390/molecules28020698DOI Listing

Publication Analysis

Top Keywords

studies quinobenzothiazine
8
human serum
8
serum proteins
8
main binding
8
binding
7
proteins
5
spectroscopic studies
4
quinobenzothiazine derivative
4
derivative terms
4
terms vitro
4

Similar Publications

Phenothiazine derivatives are widely studied in various fields such as biology, chemistry, and medicine research because of their pharmaceutical effects. The first compound used successfully in the treatment of psychosis was a phenthiazine derivative, chlorpromazine. Apart from its activity in neurons, chlorpromazine has also been reported to display anticancer and antibacterial properties.

View Article and Find Full Text PDF

Synthesis of anticancer substances and studying their binding abilities towards human serum proteins as carriers are important parts of pharmaceutical and medical sciences development. The presented work is a continuation of studies of quinobenzothiazine derivatives binding with serum proteins. The main aim of this work was a spectroscopic analysis of second from benzothiazinium derivatives salt, 9-fluoro-5-alkyl-12(H)-quino [3,4-b][1,4]benzothiazinium chloride (Salt2), its interaction with carrier proteins, i.

View Article and Find Full Text PDF

Plasma proteins play a fundamental role in living organisms. They participate in the transport of endogenous and exogenous substances, especially drugs. 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts, have been synthesized as potential anticancer substances used for cancer treatment.

View Article and Find Full Text PDF

The inverse correlation observed between Alzheimer's disease (AD) and cancer has prompted us to look for cholinesterase-inhibiting activity in phenothiazine derivatives that possess anticancer properties. With the use of in silico and in vitro screening methods, our study found a new biological activity in anticancer polycyclic, tricyclic, and tetracyclic compounds. The virtual screening of a library of 120 ligands, which are the derivatives of azaphenothiazine, led to the identification of 25 compounds that can act as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE).

View Article and Find Full Text PDF

Our previous studies demonstrated that among phenothiazines several derivatives could be found showing strong antiproliferative actions and the property of inhibiting inducible tumor necrosis factor alpha (TNF a) production in human blood cultures. The aim of this investigation was to determine potential antimicrobial actions of forty four new phenothiazine derivatives with the quinobenzothiazine structure. The compounds showed differential antibacterial and antifungal activities against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans depending on the compound structures, concentrations and bacterial strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!