The direct and rapid determination of trace cobalt ion (Co) in the electrolyte of zinc smelting plants is urgently needed but is impeded by the severe interference of extremely high-concentration zinc ions in the solution. Herein, colorimetric detection of Co by the polyvinylpyrrolidone functionalized silver nanoparticles (PVP-AgNPs) is realized in solutions with the Zn/Co ratio being high, up to (0.8-5) × 10, which is located within the ratio range in industrial solution. The high concentration of Zn induces a strong attenuation of Co-related signals in ultraviolet-visible (UV-vis) extinction spectra; nevertheless, a good linear range for detecting 1-6 mg/L Co in 50 g/L Zn solution is still acquired. The strong anti-interference toward other metal ions and the mechanism understanding for trace Co detection in such a high-concentration Zn solution are also revealed by systematic analysis techniques. The results extend the AgNPs as colorimetric sensors to industrial solutions, providing a new strategy for detecting trace-metal ions in industrial plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861045PMC
http://dx.doi.org/10.3390/molecules28020592DOI Listing

Publication Analysis

Top Keywords

cobalt ion
8
extending nanoparticles
4
nanoparticles colorimetric
4
colorimetric sensor
4
industrial
4
sensor industrial
4
industrial zinc
4
zinc electrolyte
4
electrolyte cobalt
4
ion detection
4

Similar Publications

Nanoparticles are essential for energy storage, catalysis, and medical applications, emphasizing their accurate chemical characterization. However, atom probe tomography (APT) of nanoparticles sandwiched at the interface between an encapsulating film and a substrate poses difficulties. Poor adhesion at the film-substrate interface can cause specimen fracture during APT, while impurities may introduce additional peaks in the mass spectra.

View Article and Find Full Text PDF

Biosorption performance toward Co(II) and Cd(II) by irradiated Fusarium solani biomass.

Environ Geochem Health

January 2025

Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt.

Fusarium solani biomass plays a significant role in water pollution remediation due to its ability to sequester heavy metals, particularly cobalt (Co(II)) and cadmium (Cd(II)), which pose severe environmental and health risks. This study aimed to identify fungi from sewage-contaminated sites and evaluate their efficiency in absorbing and reducing Co(II) and Cd(II) ions. The biosorption potential of irradiated Fusarium solani biomass for removing Co(II) and Cd(II) ions from aqueous solutions was investigated.

View Article and Find Full Text PDF

Large Language Modeling to Assist Natural Polyphenols as Green Precipitants for Recycling Spent Batteries.

Langmuir

January 2025

BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.

The growing demand for energy storage batteries, driven by the need to alleviate global warming and reduce fossil fuel dependency, has led to environmental concerns surrounding spent batteries. Efficient recycling of these batteries is essential to prevent pollution and recover valuable metal ions such as nickel (Ni), cobalt (Co), and manganese (Mn). Conventional hydrometallurgical methods for battery recycling, while effective, often involve harmful chemicals and processes.

View Article and Find Full Text PDF

A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.

View Article and Find Full Text PDF

A novel coordination compound, [Co()(HO)], was synthesized from aqueous solutions of Co(NO) and the ligand 2-[(5-methyl-1,3,4-thia-diazol-2-yl)sulfan-yl]acetic acid (H, CHNOS). In the monoclinic crystals (space group 2/), the cobalt(II) ion is located about a centre of symmetry and is octa-hedrally coordinated by two anions in a monodentate fashion through carboxyl O atoms and by four water mol-ecules. A relatively strong hydrogen bond between one of the water mol-ecules and the non-coordinating carboxyl-ate O atom consolidates the conformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!