AI Article Synopsis

  • Research on bioleaching has traditionally focused on acidophilic organisms, which struggle with high chloride concentrations, highlighting the need for alternatives in seawater environments due to limited access to fresh water.
  • This study identified two moderately halophilic sulphur-oxidising bacteria as effective in liberating various metals from mine waste, demonstrating up to 30% cobalt recovery and significant amounts of copper, lead, zinc, and others.
  • Although the bioleaching rates of these halophilic bacteria are lower than traditional methods, their ability to operate in saline conditions presents an opportunity for environmentally friendly metal recovery using seawater.

Article Abstract

For many years, research on the microbial-dissolution of metals from ores or waste materials mainly focussed on the study of acidophilic organisms. However, most acidophilic bioleaching microorganisms have limited tolerance to high chloride concentrations, thereby requiring fresh water for bioleaching operations. There is a growing interest in the use of seawater for leaching purposes, especially in regions with less access to fresh water. Consequently, there is a need to find halophilic organisms with bioleaching potentials. This study investigated the bioleaching potentials of four moderately halophilic sulphur-oxidising bacteria: and . Results revealed and as the most promising for bioleaching. Pure cultures of the two strains liberated about 30% Co, and between 8-17% Cu, Pb, Zn, K, Cd, and Mn from a mine waste rock sample from the Neves Corvo mine, Portugal. Microwave roasting of the waste rock at 400 and 500 °C improved the bioleaching efficiency of for Pb (13.7 to 45.7%), Ag (5.3 to 36%) and In (0 to 27.4%). Mineralogical analysis of the bioleached residues using SEM/MLA-GXMAP showed no major difference in the mineral compositions before or after bioleaching by the spp. Generally, the bioleaching rates of the spp. are quite low compared to that of the conventional acidophilic bioleaching bacteria. Nevertheless, their ability to liberate potential pollutants (metal(loid)s) into solution from mine waste raises environmental concerns. This is due to their relevance in the biogeochemistry of mine waste dumps, as similar neutrophile halophilic sulphur-oxidising organisms (e.g., spp.) have been isolated from mine wastes. On the other hand, the use of competent halophilic microorganisms could be the future of bioleaching due to their high tolerance to Cl ions and their potential to catalyse mineral dissolution in seawater media, instead of fresh water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866277PMC
http://dx.doi.org/10.3390/microorganisms11010222DOI Listing

Publication Analysis

Top Keywords

mine waste
16
halophilic sulphur-oxidising
12
fresh water
12
bioleaching
11
sulphur-oxidising bacteria
8
acidophilic bioleaching
8
bioleaching potentials
8
waste rock
8
mine
6
waste
6

Similar Publications

Understanding exposure risk using soil testing and GIS around an abandoned asbestos mine.

Ann Glob Health

January 2025

Department of Environmental and Occupational Health, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104 USA.

Abandoned asbestos mines are a potential source of environmental contamination and exposure for nearby residents. The asbestos exposure risk may persist even after the cessation of mining activity if the mine is not properly closed. One such abandoned mine is at Roro Hills in the Jharkhand state of India.

View Article and Find Full Text PDF

Identification of drivers of global trade in plastic waste based on GCA and ISM-MICMAC model: Taking China, USA and South Africa as cases.

J Environ Manage

January 2025

School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou, 570228, China. Electronic address:

Plastic waste's dual characteristics of "resource" and "pollution" led to the prevalence of trade. The Global Plastic Waste Trade Network (GPWTN) is heterogeneous, and its structure is susceptible to the influence of key countries within it. However, there is a shortage of research on the key countries and trade drivers influencing GPWTN evolution.

View Article and Find Full Text PDF

Effects of different water and fertilizer treatments on the matrix properties and plant growth of tailings waste.

Sci Rep

January 2025

Land and Resources Survey Center, Hebei Provincial Geology and Mineral Exploration and Development Bureau, Shijiazhuang, 050081, China.

Vegetation ecological restoration technology is widely regarded as an environmentally sustainable and green technology for the remediation of mineral waste. The appropriate ratio of amendments can improve the substrate environment for plant growth and increase the efficiency of ecological restoration. Herbs and shrubs are preferred for vegetation restoration in abandoned mines because of their rapid establishment and easy management.

View Article and Find Full Text PDF

Life cycle assessment and industrial synergy for carbon reduction: A circular economy approach.

Sci Total Environ

January 2025

Geology and Sustainable Mining Institute, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco.

In the face of the climate change crisis, circular economy (CE) is put forward as a promising key to the sustainable development goals (SDGs) riddle. In this context that affects developed and developing countries alike, circular initiatives arise, such is the case for Morocco where an industrial synergy based on the CE concept of 'waste is food' can be envisioned between the local phosphate and cement industries. In order to support and guide this initiative, a life cycle assessment (LCA) was conducted to compare the environmental performance of the production of ordinary Portland cement (OPC), limestone calcined clay cement (LC3) and a phosphate waste-based cement known as calcined marl cement (CMC).

View Article and Find Full Text PDF

Potato ( L.) is the world's third most popular vegetable in terms of consumption and the fourth most produced. Potatoes can be easily cultivated in different climates and locations around the globe and often in soils contaminated by heavy metals due to industrial activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!