Fungi colonizing the surface and endosphere of two widespread Poaceae weed species, Avena fatua and Echinochloa crus-galli, were isolated to compare the taxonomic composition between the plant species, location, and year of the seed collection. The seed-degrading potential of Fusarium isolated from the seeds was tested by inoculating seeds of E. crus-galli with spore suspension. Molecular identification of epiphytic and endophytic fungal genera was performed by sequencing the ITS region of rDNA. Endophytes comprised of significantly lower fungal richness compared to epiphytes. A significant taxonomic overlap was observed between the endosphere and seed surface. The most abundant genera were Alternaria, Fusarium, Cladosporium, and Sarocladium. Analysis of similarities and hierarchical clustering showed that microbial communities were more dissimilar between the two plant species than between the years. Fusarium isolates with a high potential to infect and degrade E. crus-galli seeds in laboratory conditions belong to F. sporotrichioides and F. culmorum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863844PMC
http://dx.doi.org/10.3390/microorganisms11010184DOI Listing

Publication Analysis

Top Keywords

epiphytic endophytic
8
fungi colonizing
8
weed species
8
plant species
8
endophytic fungi
4
seeds
4
colonizing seeds
4
seeds weed
4
species
4
species spp
4

Similar Publications

Meristematic and meristematic-like fungi in .

Fungal Syst Evol

December 2024

Laboratório de Micologia (LabMicol), Departamento de Biociências e Tecnologia (DEBIOTEC), Instituto de Patologia Tropical e Saúde Pública (IPTSP), Universidade Federal de Goiás (UFG), Rua 235, s/n, Setor Universitário, CEP: 74605-050, Goiânia, GO, Brazil.

Meristematic fungi are mainly defined as having aggregates of thick-walled, melanised cells enlarging and reproducing by isodiametric division. black meristematic and meristematic-like fungi have been allied to , which currently has two accepted families, and , with fungi mainly regarded as pathogens, parasites, saprobes and epiphytes of different plant species. This study aimed to verify the phylogenetic position using four nuclear markers (SSU, LSU, ITS and ) of the genera associated with , namely , , and , and the new genus, .

View Article and Find Full Text PDF

Endophytic Bacteria from the Desiccation-Tolerant Plant and Their Potential as Plant Growth-Promoting Microorganisms.

Microorganisms

December 2024

Laboratorio de Fisiología Molecular de Plantas, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca 62209, Mexico.

Bacteria associated with plants, whether rhizospheric, epiphytic, or endophytic, play a crucial role in plant productivity and health by promoting growth through complex mechanisms known as plant growth promoters. This study aimed to isolate, characterize, identify, and evaluate the potential of endophytic bacteria from the resurrection plant in enhancing plant growth, using ecotype Col. 0 as a model system.

View Article and Find Full Text PDF

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) represents a critical public health issue that requiring immediate action. Wild halophytic plants can be the solution for the AMR crisis because they harbor unique endophytes capable of producing potent antimicrobial metabolites. This study aimed at identifying promising and antimicrobial metabolites produced by endophytic/epiphytic bacteria recovered from the wild Bassia scoparia plant.

View Article and Find Full Text PDF

Emergent Escherichia coli of the highly virulent B2-ST1193 clone producing KPC-2 carbapenemase in ready-to-eat vegetables.

J Glob Antimicrob Resist

December 2024

Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), São Paulo, Brazil. Electronic address:

Objectives: Critical priority carbapenem-resistant pathogens constitute a worldwide public health problem. Escherichia coli (E. coli) ST1193 is an emerging high-risk clone that demonstrates prolonged gut persistence, and association with community-onset urinary and bloodstream infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!