A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit. | LitMetric

Evaluation of Endospore-Forming Bacteria for Suppression of Postharvest Decay of Apple Fruit.

Microorganisms

Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA.

Published: December 2022

The use of microbial biocontrol agents for control of postharvest disease has been the subject of intensive research over the past three decades resulting in commercialization of several biocontrol products. The objective of this research was to test endospore-forming bacteria collected from apple leaves for suppression of bitter rot and blue mold on apple. Bacteria were collected from abandoned, low-input, organic, and conventionally managed orchards in Pennsylvania and were screened for their ability to produce endospores, hydrolyze chitin, reduce pathogen growth in vitro, and suppress postharvest disease in vivo. Several isolates reduced bitter rot lesion size on 'Rome Beauty' from 40-89% compared to untreated controls. isolates, A3-6 and Ae-1, resulted in the greatest suppression of bitter rot lesion size. One isolate, A3-2, suppressed blue mold lesion size. Scanning electron microscopy of inoculated apple wounds suggests parasitism as a mode of action explains the suppression of bitter rot lesion size by isolate A3-6. Of the top seventeen isolates exhibiting biocontrol potential, 70% were collected from abandoned or unmanaged locations. This research demonstrates abandoned apple orchards can be a source of new biocontrol agents for control of postharvest diseases of apple.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862789PMC
http://dx.doi.org/10.3390/microorganisms11010081DOI Listing

Publication Analysis

Top Keywords

bitter rot
16
lesion size
16
suppression bitter
12
rot lesion
12
endospore-forming bacteria
8
biocontrol agents
8
agents control
8
control postharvest
8
postharvest disease
8
bacteria collected
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!