AI Article Synopsis

  • Laser ablation of silicon involves varying results based on the laser pulse width, with shorter pulses causing ablation and longer pulses leading to melting.
  • The energy fluence threshold for ablation increased significantly (5.63 to 24.84 J/cm) as the pulse width expanded from 26 to 500 ns.
  • Notably, longer pulse widths allow surface melting to occur at lower power levels due to extended heating time, resulting in different line widths when scanning surfaces.

Article Abstract

Laser ablation of semiconductor silicon has been extensively studied in the past few decades. In the ultrashort pulse domain, whether in the fs scale or ps scale, the pulse energy fluence threshold in the ablation of silicon is strongly dependent on the pulse width. However, in the ns pulse scale, the energy fluence threshold dependence on the pulse width is not well understood. This study elucidates the interaction energy dependency on pulse width in ns NIR laser ablation of silicon. The level of ablation or melting was determined by the pulse energy deposition rate, which was proportional to laser peak power. Shorter pulse widths with high peak power were likely to induce surface ablation, while longer pulse widths were likely to induce surface melting. The ablation threshold increased from 5.63 to 24.84 J/cm as the pulse width increased from 26 to 500 ns. The melting threshold increased from 3.33 to 5.76 J/cm as the pulse width increased from 26 to 200 ns, and then remained constant until 500 ns, the longest width investigated. Distinct from a shorter pulse width, a longer pulse width did not require a higher power level for inducing surface melting, as surface melting can be induced at a lower power with the longer heating time of a longer pulse width. The line width from surface melting was less than the focused spot size; the line appeared either as a continuous line at slow scanning speed or as isolated dots at high scanning speed. In contrast, the line width from ablation significantly exceeded the focused spot size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865056PMC
http://dx.doi.org/10.3390/mi14010119DOI Listing

Publication Analysis

Top Keywords

pulse width
36
surface melting
16
pulse
15
width
12
longer pulse
12
interaction energy
8
energy dependency
8
dependency pulse
8
width nir
8
nir laser
8

Similar Publications

Mechanisms driving different QPD cells response signals revealed by a single cell irradiated with a laser.

Sci Rep

January 2025

Jilin Key Laboratory of Solid-State Laser Technology and Application, School of Science, Changchun, 130022, Jilin, China.

The response mechanism of a Four-Quadrant Photodetector (QPD) in an experimental setting was studied by irradiating a single QPD cell with a millisecond-pulsed laser. The response signal of the irradiated QPD cell varied with energy flux, pulse width, and applied bias, and comprised four main stages: an initial stage, decreasing barrier stage, holding stage, and recovery stage. Not only was the response signal of the irradiated cell affected by laser irradiation, but also the responses of the other three cells.

View Article and Find Full Text PDF

Development of a 300 kV/3 kHz nanosecond pulse generator using semiconductor opening switches.

Rev Sci Instrum

January 2025

State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.

In this paper, we present the development of a nanosecond pulse generator utilizing semiconductor opening switches (SOS), designed to deliver high voltage and operate at a high repetitive frequency. The pulse generator comprises three main components: a primary charging unit, a magnetic pulse compression unit, and an SOS magnification unit. To ensure stable operation of the high-power charging unit at high repetitive frequencies, a rectifying resonant charging and energy recovery circuit are implemented, providing a 1 kV charging voltage at a 3 kHz repetition rate.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Role of en-APTAS Membranes in Enhancing the NO Gas-Sensing Characteristics of Carbon Nanotube/ZnO-Based Memristor Gas Sensors.

Biosensors (Basel)

December 2024

Department of Semiconductor Systems Engineering, Convergence Engineering for Intelligent Drone, Institute of Semiconductor and System IC, Sejong University, 209, Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea.

NO is a toxic gas that can damage the lungs with prolonged exposure and contribute to health conditions, such as asthma in children. Detecting NO is therefore crucial for maintaining a healthy environment. Carbon nanotubes (CNTs) are promising materials for NO gas sensors due to their excellent electronic properties and high adsorption energy for NO molecules.

View Article and Find Full Text PDF

Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.

Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!