Drug-resistant bacterial strains seriously threaten human health. Rapid screening of antibiotics is urgently required to improve clinical treatment. Conventional methods of antimicrobial susceptibility testing rely on turbidimetry that is evident only after several days of incubation. The lengthy time of the assay can delay clinical treatment. Here, we proposed a single-cell level rapid system based on a microfluidic chip. The detection period of 30 min to 2 h was significantly shorter than the conventional turbidity-based method. To promote detection efficiency, 16 independent channels were designed, permitting the simultaneous screening of 16 drugs in the microfluidic chip. Prepositioning of drugs in the chip permitted prolonged transportation and storage. This may allow for the widespread use of the novel system, particularly in the regions where medical facilities are scarce. The growth curves were reported rapidly through a custom code in Matlab after tracking and photographing the bacteria during microscopy examination. The capability of the proposed system was validated by antimicrobial susceptibility testing trials with standard strains. The system provides a potentially useful detection tool for drug-resistant bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861505PMC
http://dx.doi.org/10.3390/mi14010046DOI Listing

Publication Analysis

Top Keywords

microfluidic chip
12
chip detection
8
single-cell level
8
clinical treatment
8
antimicrobial susceptibility
8
susceptibility testing
8
detection
4
detection drug
4
drug resistance
4
resistance single-cell
4

Similar Publications

Current in vitro models of 3D tumor spheroids within the microenvironment have emerged as promising tools for understanding tumor progression and potential drug responses. However, creating spheroids with functional vasculature remains challenging in a controlled and high-throughput manner. Herein, a novel open 3D-microarray platform is presented for a spheroid-endothelium interaction (ODSEI) chip, capable of arraying more than 1000 spheroids on top of the vasculature, compartmentalized for single spheroid-level analysis of drug resistance, and allows for the extraction of specific spheroids for further analysis.

View Article and Find Full Text PDF

Plasmids play a vital role in synthetic biology by enabling the introduction and expression of foreign genes in various organisms, thereby facilitating the construction of biological circuits and pathways within and between cell populations. For many applications, maintaining functional plasmids without antibiotic selection is critical. This study introduces an open-hardware-based microfluidic workflow for analyzing plasmid retention by culturing single cells in gel microdroplets and quantifying microcolonies using fluorescence microscopy.

View Article and Find Full Text PDF

pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the leading cause of dementia worldwide, and the development of early screening methods can address its significant health and social consequences. In this paper, we present a rotary-valve assisted paper-based immunoassay device (RAPID) for early screening of AD, featuring a highly integrated on-chip rotary micro-valve that enables fully automated and efficient detection of the AD biomarker (amyloid beta 42, Aβ42) in artificial plasma. The microfluidic paper-based analytical device (μPAD) of the RAPID pre-stores the required assay reagents on a μPAD and automatically controls the liquid flow through a single valve.

View Article and Find Full Text PDF

A Microflow Chip Technique for Monitoring Platelets in Late Pregnancy: A Possible Risk Factor for Thrombosis.

J Blood Med

January 2025

Department of Blood Transfusion of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, People's Republic of China.

Purpose: To study the platelet adhesion and aggregation behaviour of late pregnancy women under arterial shear rate using microfluidic chip technology and evaluate the risk of thrombosis in late pregnancy.

Methods: We included pregnant women who were registered in the obstetrics department of our hospital between January 2021 and October 2022 and underwent regular prenatal examinations. Blood samples were collected at 32-35 weeks of gestation for routine blood tests and progesterone, oestradiol, and platelet aggregation function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!