Design and Simulation Study of an Optical Mode-Localized MEMS Accelerometer.

Micromachines (Basel)

Key Laboratory of Low Altitude Monitoring Network Technology, QiLu Aerospace Information Research Institute, Jinan 250101, China.

Published: December 2022

In this paper, we demonstrate a novel photonic integrated accelerometer based on the optical mode localization sensing mechanism, which is designed on an SOI wafer with a device layer thickness of 220 nm. High sensitivity and large measurement range can be achieved by integrating coupled ring resonators with a suspended directional coupler on a proof mass. With the help of FEA simulation and numerical analysis, the proposed optical mode-localized sensor presents a sensitivity of 10/g (modal power ratio/acceleration) and an inertial displacement of from -8 to 10 microns corresponding to a range from -23.5 to 29.4 g. The free spectral range is 4.05 nm around 1.55 microns. The acceleration resolution limited by thermomechanical noise is 4.874 μg. The comprehensive performance of this design is competitive with existing MEMS mode localized accelerometers. It demonstrates the potential of the optical mode-localized inertial sensors as candidates for state-of-the-art sensors in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866453PMC
http://dx.doi.org/10.3390/mi14010039DOI Listing

Publication Analysis

Top Keywords

optical mode-localized
12
design simulation
4
simulation study
4
optical
4
study optical
4
mode-localized mems
4
mems accelerometer
4
accelerometer paper
4
paper demonstrate
4
demonstrate novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!