Adenosine 5′-triphosphate (ATP) is released in the bladder lumen during filling. Urothelial ATP is presumed to regulate bladder excitability. Urinary ATP is suggested as a urinary biomarker of bladder dysfunctions since ATP is increased in the urine of patients with overactive bladder, interstitial cystitis or bladder pain syndrome. Altered urinary ATP might also be associated with voiding dysfunctions linked to disease states associated with metabolic syndrome. Extracellular ATP levels are determined by ATP release and ATP hydrolysis by membrane-bound and soluble nucleotidases (s-NTDs). It is currently unknown whether s-NTDs regulate urinary ATP. Using etheno-ATP substrate and HPLC-FLD detection techniques, we found that s-NTDs are released in the lumen of ex vivo mouse detrusor-free bladders. Capillary immunoelectrophoresis by ProteinSimple Wes determined that intraluminal solutions (ILS) collected at the end of filling contain ENTPD3 > ENPP1 > ENPP3 ≥ ENTPD2 = NT5E = ALPL/TNAP. Activation of adenylyl cyclase with forskolin increased luminal s-NTDs release whereas the AC inhibitor SQ22536 had no effect. In contrast, forskolin reduced and SQ22536 increased s-NTDs release in the lamina propria. Adenosine enhanced s-NTDs release and accelerated ATP hydrolysis in ILS and lamina propria. Therefore, there is a regulated release of s-NTDs in the bladder lumen during filling. Aberrant release or functions of urothelial s-NTDs might cause elevated urinary ATP in conditions with abnormal bladder excitability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862892PMC
http://dx.doi.org/10.3390/metabo13010030DOI Listing

Publication Analysis

Top Keywords

urinary atp
20
s-ntds release
12
atp
11
atp levels
8
bladder lumen
8
lumen filling
8
bladder excitability
8
atp hydrolysis
8
s-ntds
8
lamina propria
8

Similar Publications

Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.

View Article and Find Full Text PDF

The urothelium and lamina propria (LP) contribute to sensations of bladder fullness by releasing multiple mediators, including prostaglandins (PGs) and adenosine 5'-triphosphate (ATP), that activate or modulate functions of cells throughout the bladder wall. Mediators that are simultaneously released in response to bladder distention likely influence each other's mechanisms of release and action. This study investigated whether PGs could alter the extracellular hydrolysis of ATP by soluble nucleotidases (s-NTDs) released in the LP of nondistended or distended bladders.

View Article and Find Full Text PDF

PM Exposure Induces Glomerular Hyperfiltration in Mice in a Gender-Dependent Manner.

Toxics

December 2024

Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China.

As one of the most common air pollutants, fine particulate matter (PM) increases the risk of diseases in various systems, including the urinary system. In the present study, we exposed male and female C57BL/6J mice to PM for 8 weeks. Examination of renal function indices, including creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and urinary microalbumin, indicated that the kidneys of female mice, not male mice, underwent early renal injury, exhibiting glomerular hyperfiltration.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease. Sodium-glucose cotransporter protein 2 inhibitors (SGLT2i) are antihyperglycemic agents that provide additional renal-protective effects in patients with DKD, independent of their glucose-lowering effects. However, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) are an organic chemical family produced during incomplete combustion of organic materials. Besides, PAHs are associated with different detrimental health effects. Therefore, this research was aimed to assess the association between PAHs exposure, metabolic syndrome (MetS) prevalence, and cardiovascular risk in a Mexican population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!