In this study, we fabricated a nanocomposite polyethersulfone (PES) HF membrane by blending acid functionalized carbon nanotubes (FCNT) to address the issue of reduced membrane life, increased energy consumption, and operating costs due to low permeability and membrane fouling in the ultrafiltration process. Additionally, we investigated the effect of FCNT blending on the membrane in terms of the physicochemical properties of the membrane and the filtration and antifouling performance. The FCNT/PES nanocomposite HF membrane exhibited increased water permeance from 110.1 to 194.3 LMH/bar without sacrificing rejection performance and increased the flux recovery ratio from 89.0 to 95.4%, compared to a pristine PES HF membrane. This study successfully developed a high filtration and antifouling polymer-based HF membrane by blending FCNT. Furthermore, it was validated that blending FCNT into the membrane enhances the filtration and antifouling performance in the ultrafiltration process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867267 | PMC |
http://dx.doi.org/10.3390/membranes13010070 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States.
Polymeric membranes fabricated via the nonsolvent-induced phase separation process rely heavily on toxic aprotic organic solvents, like -methyl-pyrrolidine (NMP) and dimethylformamide. We suggest that the "saloplastic" nature of polyelectrolyte complexes (PECs) makes them an excellent candidate for fabricating next-generation water purification membranes that use a more sustainable aqueous phase separation process. In this study, we investigate how the properties of PECs and their interactions with salt can form pore-containing membranes from the strong polyelectrolytes poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) in the presence of potassium bromide (KBr).
View Article and Find Full Text PDFMolecules
November 2024
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.
Due to their antibacterial and antifungal properties, parabens are commonly used as biocides and preservatives in food, cosmetics, and pharmaceuticals. Parabens have been reported to exist in various water matrices at low concentrations, which renders the need for sample preparation before their quantification using analytical techniques. Thus, sample preparation methods such as solid-phase extraction (SPE), rotating-disk sorptive extraction (RDSE), and vortex-assisted dispersive liquid-liquid extraction (VA-DLLE) that are commonly used for parabens extraction and preconcentration have been discussed.
View Article and Find Full Text PDFLangmuir
December 2024
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
Water treatment and seawater desalination are two areas in which nanofiltration (NF) membranes have gained significant attention. The permeability and contamination resistance of NF membranes are crucial for their application in ion separation. Herein, a zwitterion monomeric -sulfobutylpiperazine (PIPBS) was designed and synthesized through an in situ ring-opening reaction between 1,4-butylsulfonic acid lactone and piperazine.
View Article and Find Full Text PDFMembranes (Basel)
October 2024
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida Science Campus, Roodepoort 1710, South Africa.
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.
View Article and Find Full Text PDFACS Omega
November 2024
Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
Thin-film composite (TFC) membranes containing metal-polyphenol network (MPN) selective layers were fabricated using a supramolecular self-assembly between tannic acid (TA) and ferric ion (Fe). The TA-Fe thin film was coated on a porous polyacrylonitrile support using aqueous solutions of TA and FeCl via a layer-by-layer deposition technique. The pH of the TA solution was used as a tool to alter the membrane characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!