Background and Objectives: Quercetin, a member of the flavanol family found in many fruits, vegetables, leaves and grains has been found to have a wide range of biological effects on human physiology. The aim of this study was to investigate the effects of quercetin, when administered orally in the form of the water-soluble inclusion complex with hydroxypropyl-b-cyclodextrin (Que-HP-β-CD), in an experimental model of ulcerative colitis in mice. Materials and Methods: Animals received either Dextran Sodium Sulphate (DSS), to induce colitis, + Que-HP-β-CD (Group A), DSS alone (Group B) or no intervention (control, Group C) for 7 days. All animals were weighed daily, and evaluation of colitis was performed using the Disease Activity Index (DAI). On day 7 a blood sample was taken from all animals, they were then euthanised, the large intestine was measured, and histological and immunochemical analyses were performed. Results: The DAI demonstrated an increase over time for the groups receiving DSS (Groups A and B) compared with the control group (Group C), with a significant degree of protection being observed in the group that also received quercetin (Group A): The DAI over time slope for Group B was higher than that for Group A by 0.26 points/day (95% Cl 0.20−0.33, p < 0.01). Weight calculations and immunohistochemistry results validated the DAI findings. Conclusions: In conclusion, the administration of quercetin in an ulcerative colitis model in mice presents a therapeutic/prophylactic potential that warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861512PMC
http://dx.doi.org/10.3390/medicina59010087DOI Listing

Publication Analysis

Top Keywords

ulcerative colitis
12
group
9
experimental model
8
model ulcerative
8
colitis mice
8
control group
8
quercetin
5
colitis
5
effects antioxidant
4
antioxidant quercetin
4

Similar Publications

Ethnopharmacological Importance: Zhili decoction (ZLD) is a traditional Chinese medicine prescription for ulcerative colitis (UC). However, the mechanism by which ZLD exerts its therapeutic effects in the context of UC remains unclear.

Aim Of Study: The aim of this study was to investigate the effects of ZLD on the gut microbiota and related fecal metabolite levels using a mouse model of UC.

View Article and Find Full Text PDF

The primary intent of this manuscript is to ascertain the effect of cucurbitacin IIa on ulcerative colitis (UC) and illustrate the potential mechanisms based on intestinal barrier function and the PERK/ATF4/CHOP signaling pathway. The UC mouse model was constructed by drinking 3% dextran sulfate sodium (DSS) for 1 week. The colonic tissues were stained with HE to assess pathological changes.

View Article and Find Full Text PDF

L-Arginine-Modified Selenium Nanozymes Targeting M1 Macrophages for Oral Treatment of Ulcerative Colitis.

Small

January 2025

Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China.

Ulcerative colitis (UC) involves persistent inflammation in the colon and rectum, with excessive reactive oxygen species (ROS) accumulation. This ROS buildup damages colonic epithelial cells and disrupts intestinal flora, worsening disease progression. Current antioxidant therapies are limited due to their instability in the gut and lack of targeting, hindering precise intervention at the lesion site.

View Article and Find Full Text PDF

Background And Aim: Qualitative diagnosis of ulcerative colitis-associated neoplasia (UCAN) is crucial for surveillance colonoscopy in patients with ulcerative colitis (UC). Although the utility of magnifying endoscopy with narrow-band imaging (ME-NBI) in sporadic neoplasia diagnosis has been reported, its efficacy in UCAN remains unclear. This study aimed to evaluate the usefulness of ME-NBI for qualitative diagnosis of UCAN.

View Article and Find Full Text PDF

The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that m6A methylation was essential for the survival of colonic stem cells. Here, we show that METTL3 expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!