Glycidyl azide polymer-energetic thermoplastic elastomer propellant (GAP-ETPE) has high development prospects as a green solid propellant, although the preparation of GAP-ETPE with excellent performance is still a challenge. Focusing on the demand of high-strength solid propellants for free-loading rocket motors, a GAP-ETPE model propellant with excellent overall performance was prepared in this work, and the influence of adhesive structure characteristics on its fluidity was studied. Furthermore, the influence of filler on the rheological properties of the model propellant was investigated by introducing hexogen (RDX) and Al, and a corresponding two-phase model was established. The results may provide a reference for the structural design, molding process, and parameter selection of high-performance GAP-based green solid propellants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862051PMC
http://dx.doi.org/10.3390/ma16020808DOI Listing

Publication Analysis

Top Keywords

filler rheological
8
rheological properties
8
thermoplastic elastomer
8
green solid
8
excellent performance
8
solid propellants
8
model propellant
8
influence solid
4
solid filler
4
properties propellants
4

Similar Publications

In order to solve the problems of rutting and early fatigue cracks in emulsified asphalt cold recycled pavement, and the shortage of natural stone resources and new environmental hazards caused by the use of traditional limestone powder filler. In this study, coal gangue powder was added to prepare Emulsified Asphalt Mastic (EAM) to improve the rheological properties and fatigue performance. A series of tests, including frequency scanning, temperature scanning, Multiple Stress Creep Recovery (MSCR), Linear Amplitude Scanning (LAS), and Fourier Transform Infrared spectroscopy (FTIR) were conducted.

View Article and Find Full Text PDF

Uneven of filling aggregate gradation may cause transportation problems such as pipe blockage due to segregation and stratification of filling slurry. To study the influence of aggregate gradation on the conveying performance of filler slurry, aggregate gradation experiments were carried out, rheological tests on slurries with coal gangue/aeolian sand ratios (6:4, 5:5 and 4:6) showed that appropriately increasing the proportion of aeolian sand can improve particle gradation. Computational fluid dynamics (CFD) scheme was used to simulate the pipeline transportation characteristics of the slurry under the conditions of three sets each of coal gangue/aeolian sand ratios, slurry concentrations (72%,74% and 76%), and inlet velocities (1.

View Article and Find Full Text PDF

Technological properties of the furcellaran-whey protein isolate emulgels with various evening primrose oil concentration.

Int J Biol Macromol

December 2024

Department of Chemistry, Faculty of Food Technology, University of Agriculture, Balicka St. 122, PL-30-149 Cracow, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Cracow, Poland. Electronic address:

Effect of different evening primrose oil content (1-20 %) on the rheological, mechanical, textural and microstructure of furcellaran/whey protein isolate emulsion gels were investigated at neutral, unmodified pH environment. The results indicate that, irrespective of the concentration, the oil acted as an inactive filler and was not chemically bound in the polymer network but only physically immobilized in it. The increasing oil amount in the material from 1 to 20 % resulted in a percentage decrease in hardness (52 %), gumminess (71 %) and stress relaxation ratio (17 %) which means that presence of the hydrophobic components weakens the structure of the material, but all samples exhibit elastic behaviour.

View Article and Find Full Text PDF

This study presents the development of thiol-maleimide/thiol-thiol double self-crosslinking hyaluronic acid-based (HA) hydrogels for use as dermal fillers. Hyaluronic acid with varying degrees of maleimide substitution (10%, 20%, and 30%) was synthesized and characterized, and HA hydrogels were fabricated using two molecular weights of four-arm polyethylene glycol (PEG10K/20K)-thiol as crosslinkers. The six resulting HA hydrogels demonstrated solid-like behavior with distinct physical and rheological properties.

View Article and Find Full Text PDF

Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing.

Ultrason Sonochem

December 2024

State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!