In order to solve the problem of excessive short-circuit current in the present power system, a fault current limiter has become a new type of power device with high demand and is one of the current research hotspots. The flux-coupling type superconducting fault current limiter (FC-SFCL) generates a current-limiting impedance through decoupling superconducting parallel inductance based on the circuit breakers' fractional interruption. The principle is simple, and the impedance is low during normal operation. It can directly use the existing circuit breaker to open a short circuit that is much higher than its own breaking capacity. Thus, it can be used for large-capacity fault current limiting and effective failure breaking. This paper focused on exploring and studying the implementation scheme of practical products of FC-SFCL. Considering that the quenched-type parallel inductance can limit the first peak value of the fault current, a quenched-type improvement scheme was proposed. Then, an electromagnetic design method based on the simplified calculation of the number of parallel tapes was proposed, which simplified the design process and reduced the design difficulty of the quenched FC-SFCL. Taking a 10 kV/500 A/5 kA quenched prototype as an example, its electromagnetic design was completed, and the performances of the non-quenched and quenched schemes were compared. The results showed that, compared to the non-quenched structure, the technical economics of the quenched one were more prominent, and it can be used preferentially for engineering prototypes. This study about the scheme of the quenched FC-SFCL and its electromagnetic design method is useful for promoting the implementation of the current limiter engineering prototype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864362 | PMC |
http://dx.doi.org/10.3390/ma16020754 | DOI Listing |
Heliyon
July 2024
School of Petroleum Engineering, Chongqing University of Science & Technology, Chongqing, 401331, China.
City gas stations (CGSs) play a crucial role in ensuring a stable and safe supply of natural gas to urban users. However, as the service time of stations increases and the performance of components deteriorates, concerns about the safety and reliability of these station have grown among operators and local government authorities. This paper proposes a fuzzy reliability assessment methodology for CGSs that considers the polymorphism of component faults and the uncertainties associated with fault relationships, failure probabilities, and fault magnitudes.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moiré superlattices, posing stringent requirements to constituent materials and twist angles.
View Article and Find Full Text PDFACS Nano
January 2025
Peter Grünberg Institut (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany.
The combination of an ordinary s-type superconductor with three-dimensional topological insulators creates a promising platform for fault-tolerant topological quantum computing circuits based on Majorana braiding. The backbone of the braiding mechanism are three-terminal Josephson junctions. It is crucial to understand the transport in these devices for further use in quantum computing applications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Guizhou University, Guiyang 550028, China.
Deep learning has performed well in feature extraction and pattern recognition and has been widely studied in the field of fault diagnosis. However, in practical engineering applications, the lack of sample size limits the potential of deep learning in fault diagnosis. Moreover, in engineering practice, it is usually necessary to obtain multidimensional fault information (such as fault localization and quantification), while current methods mostly only provide single-dimensional information.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China.
Photovoltaic arrays are exposed to outdoor conditions year-round, leading to degradation, cracks, open circuits, and other faults. Hence, the establishment of an effective fault diagnosis system for photovoltaic arrays is of paramount importance. However, existing fault diagnosis methods often trade off between high accuracy and localization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!