In the present work, the possibility of manufacturing long-length TiNiHf rods with a lowered Hf content and a high-temperature shape memory effect in the range of 120-160 °C was studied. Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were obtained by electron beam melting in a copper water-cooled stream-type mold. The obtained ingots were rotary forged at the temperature of 950 °C, with the relative strain from 5 to 10% per one pass. The obtained results revealed that the ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity, presumably because of the excess precipitation of (Ti,Hf)Ni-type particles. The premature destruction of ingots during the deformation process does not allow obtaining high-quality long-length rods. A long-length rod with a diameter of 3.5 mm and a length of 870 mm was produced by rotary forging from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of mechanical properties (a dislocation yield stress σ of 800 MPa, ultimate tensile strength σ of 1000 MPa, and elongation to fracture δ of 24%), functional properties (a completely recoverable strain of 5%), and a required finishing temperature of shape recovery of 125 °C in the as-forged state and of 155 °C after post-deformation annealing at 550 °C for 2 h.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865431 | PMC |
http://dx.doi.org/10.3390/ma16020615 | DOI Listing |
Drug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
College of Life Sciences, Liaoning Normal University, Dalian 116000, Liaoning Province, China.
Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Pharmacy, the First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu Province, China.
Berberine (BBR), an isoquinoline alkaloid abundant in Coptis chinensis, exhibits anti-tumor and hypoglycemic properties. The regulation of tumor cell homeostasis and metabolism is greatly influenced by Hypoxia-inducible factor-1α (HIF-1α). This research aims to elucidate whether BBR inhibits the progression of hepatocellular carcinoma (HCC) by modulating HIF-1α expression.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Shandong First Medical University Affiliated Cancer Hospital, Jinan 250117, China. *Corresponding author, E-mail:
It has been popular and challenging to undertake researches on the delay of acquired resistance of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKI). As key cells for tumor initiation, cancer stem cells (CSC) play an important role in the process of resistance to EGFR-TKI. Although preliminary studies found that traditional Chinese medicine (TCM) could inhibit CSC properties and delay EGFR-TKI resistance, the specific molecular mechanism remains unclear.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Chair of Technical Biochemistry, Technische Universität Dresden, Dresden, Saxony, Germany.
Ikarugamycin is a member of the natural product family of the polycyclic tetramate macrolactams (PoTeMs). The compound exhibits a diverse range of biological activities, including antimicrobial, antiprotozoal, anti-leukemic, and anti-inflammatory properties. In addition, it interferes with several crucial cellular functions, such as oxidized low-density lipoprotein uptake in macrophages, Nef-induced CD4 cell surface downregulation, and mechanisms of endocytosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!