Measurement of Optical Properties of CHNHPbX (X = Br, I) Single Crystals Using Terahertz Time-Domain Spectroscopy.

Materials (Basel)

GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China.

Published: January 2023

Organometallic lead bromide and iodide perovskite single crystals (PSCs) are potential candidates for terahertz applications. Herein, we performed terahertz time-domain spectroscopy (THz-TDS) in the frequency range of 0.1-3.0 THz on different thicknesses of MAPbBr (0.3, 0.6, and 0.8 mm) and MAPbI (0.6, 0.8, 0.9, 1.3, and 2.3 mm). The measurements were carried out with respect to the position (along the focal area), azimuthal rotation of the PSCs, and incidence angles of the reference THz pulse on the PSCs' surface. Based on the transmitted THz pulses from PSCs from the above measurements, we calculated the real and imaginary parts of the refractive index, dielectric constants, absorption coefficients, and dark conductivity. These optical parameters tend to increase with decreases in the PSCs' thicknesses. The transmission spectra of the terahertz electric field indicate that the measured optical properties do not vary significantly with the position and orientation of PSCs. The real parts of the refractive index and dielectric constants are higher than the imaginary values for both PSCs. On the other hand, a slight blueshift in the optical phonon vibrations corresponding to Pb-Br/I-Pb and Pb-Br/I bonds is observed with an increase in thickness. Interestingly, the phonon vibrations do not vary with the incidence angle of the THz pulses on the same crystal's surface. The optical parameters based on THz-TDS reveal that the PSCs satisfy the requirement for tunable THz devices which need suitable, sensitive, and stable absorption properties between 0.1 and 3 THz.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866690PMC
http://dx.doi.org/10.3390/ma16020610DOI Listing

Publication Analysis

Top Keywords

optical properties
8
single crystals
8
terahertz time-domain
8
time-domain spectroscopy
8
thz pulses
8
parts refractive
8
refractive dielectric
8
dielectric constants
8
optical parameters
8
phonon vibrations
8

Similar Publications

Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.

View Article and Find Full Text PDF

This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.

View Article and Find Full Text PDF

In optical imaging of solid tumors, signal contrasts derived from inherent tissue temperature differences have been employed to distinguish tumor masses from surrounding tissue. Moreover, with the advancement of active infrared imaging, dynamic thermal characteristics in response to exogenous thermal modulation (heating and cooling) have been proposed as novel measures of tumor assessment. Contrast factors such as the average rate of temperature changes and thermal recovery time constants have been investigated through an active thermal modulation imaging approach, yielding promising tumor characterization results in a xenograft mouse model.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Phononic modulation of spin-lattice relaxation in molecular qubit frameworks.

Nat Commun

December 2024

Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China.

The solid-state integration of molecular electron spin qubits could promote the advancement of molecular quantum information science. With highly ordered structures and rational designability, microporous framework materials offer ideal matrices to host qubits. They exhibit tunable phonon dispersion relations and spin distributions, enabling optimization of essential qubit properties including the spin-lattice relaxation time (T) and decoherence time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!