Spin casting is the oldest method of manufacturing precast concrete pipes among all existing methods. While improved concrete mixtures incorporating fibers for other methods of concrete pipe manufacturing, such as the vibration method and roller compaction method, have been developed, no such concrete mixture has yet been developed for spun-cast concrete pipes. This study was designed to explore the possibility of incorporating locally manufactured steel fibers and commercially available polypropylene fibers to develop an improved concrete mixture for use in the manufacturing of full-scale spun-cast concrete pipes. The used steel fibers were of two types, i.e., straight and bundled steel fibers, manufactured by cutting locally available long straight and bundled steel wires, respectively. Various dosages of steel fibers (i.e., 20, 30, 40, and 50 kg/m) and polypropylene fibers (i.e., 5, 10, 15, and 20 kg/m) were used in mono and hybrid (steel and polypropylene) forms. The properties in the fresh state and mechanical properties of the test mixtures were investigated. Full-scale spun-cast concrete pipes having a 450 mm internal diameter were manufactured and tested using the three-edge bearing test. The compressive strength of the mixtures was largely insensitive to the dosage of the fibers. The splitting tensile strength of all fiber-reinforced concrete mixtures was higher than that of the reference mixture without fibers, with a 24% increase recorded for the concrete mixture incorporating 50 kg/m of bundled steel fibers relative to the reference mixture with no fibers. The flexural performance of the fiber-reinforced concrete mixtures was superior to that of the reference mixture without fibers in terms of flexural strength, toughness, residual strength, and crack control, with up to 28% higher flexural strength relative to the reference mixture without fibers. The three-edge bearing tests on full-scale spun-cast pipes incorporating steel fibers showed that the use of fibers is a promising alternative to the traditional steel cage in spun-cast concrete pipes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862919 | PMC |
http://dx.doi.org/10.3390/ma16020512 | DOI Listing |
Sci Rep
September 2024
Guangxi Road and Bridge Engineering Group Co., Ltd., Nanning, 530200, China.
Concrete-filled steel tubes (CFSTs) have been increasingly utilized in engineering due to their excellent mechanical properties. Ensuring a solid bond between a steel tube and concrete is essential for optimizing their synergistic effect. This study introduces an internally welded steel bar structure within the inner wall of a steel tube to enhance the bond properties at the connection interface.
View Article and Find Full Text PDFSci Total Environ
November 2024
School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China. Electronic address:
Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 μm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat.
View Article and Find Full Text PDFMaterials (Basel)
August 2024
Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, 30-059 Cracow, Poland.
Heliyon
August 2024
Department of Mechanical Engineering, Saga University, 1 Honjo-machi, Saga, 840-8502, Japan.
Ground heat exchanger (GHE) is the most crucial element of a ground source heat pump (GSHP) system for building cooling and heating by the utilization of geothermal energy. Therefore, intending to enhance the performance of GHE, the present study conducts a computational investigation of the thermal performance of modified spiral tube vertical GHEs. Several modifications of uniform-pitched spiral GHE are made to increase its thermal performance.
View Article and Find Full Text PDFMaterials (Basel)
July 2024
School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China.
In order to meet the needs of low-impact development and sustainable development, there is an urgent desire to develop an innovative recycled aggregate pervious concrete (I-RAPC) that is of high strength and permeability. In this study, I-RAPC was prepared based on response surface methodology (RSM) using recycled aggregate, river sand, and different types of pipes as the materials, and the effects of different pipe parameters (number, diameter, material, and distribution form) on the performance of I-RAPC were investigated. In addition, the calculation model of the compressive strength and the permeability coefficient of I-RAPC were proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!