Spin casting is the oldest method of manufacturing precast concrete pipes among all existing methods. While improved concrete mixtures incorporating fibers for other methods of concrete pipe manufacturing, such as the vibration method and roller compaction method, have been developed, no such concrete mixture has yet been developed for spun-cast concrete pipes. This study was designed to explore the possibility of incorporating locally manufactured steel fibers and commercially available polypropylene fibers to develop an improved concrete mixture for use in the manufacturing of full-scale spun-cast concrete pipes. The used steel fibers were of two types, i.e., straight and bundled steel fibers, manufactured by cutting locally available long straight and bundled steel wires, respectively. Various dosages of steel fibers (i.e., 20, 30, 40, and 50 kg/m) and polypropylene fibers (i.e., 5, 10, 15, and 20 kg/m) were used in mono and hybrid (steel and polypropylene) forms. The properties in the fresh state and mechanical properties of the test mixtures were investigated. Full-scale spun-cast concrete pipes having a 450 mm internal diameter were manufactured and tested using the three-edge bearing test. The compressive strength of the mixtures was largely insensitive to the dosage of the fibers. The splitting tensile strength of all fiber-reinforced concrete mixtures was higher than that of the reference mixture without fibers, with a 24% increase recorded for the concrete mixture incorporating 50 kg/m of bundled steel fibers relative to the reference mixture with no fibers. The flexural performance of the fiber-reinforced concrete mixtures was superior to that of the reference mixture without fibers in terms of flexural strength, toughness, residual strength, and crack control, with up to 28% higher flexural strength relative to the reference mixture without fibers. The three-edge bearing tests on full-scale spun-cast pipes incorporating steel fibers showed that the use of fibers is a promising alternative to the traditional steel cage in spun-cast concrete pipes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862919PMC
http://dx.doi.org/10.3390/ma16020512DOI Listing

Publication Analysis

Top Keywords

concrete pipes
24
steel fibers
24
concrete mixture
16
bundled steel
16
fibers
16
spun-cast concrete
16
reference mixture
16
mixture fibers
16
concrete
13
polypropylene fibers
12

Similar Publications

Concrete-filled steel tubes (CFSTs) have been increasingly utilized in engineering due to their excellent mechanical properties. Ensuring a solid bond between a steel tube and concrete is essential for optimizing their synergistic effect. This study introduces an internally welded steel bar structure within the inner wall of a steel tube to enhance the bond properties at the connection interface.

View Article and Find Full Text PDF

The sewer advances: How to select eco-friendly pipe materials for environmental protection.

Sci Total Environ

November 2024

School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China. Electronic address:

Sewer pipe materials exhibit diverse inner-surface features, which can affect the attachment of biofilm and influence microbial metabolic processes. To investigate the role of the type of pipe material on the composition and metabolic capabilities of the adhering microorganisms, three sets of urban sewers (High-Density Polyethylene Pipe (HDPE), Ductile Iron Pipe (DIP), and Concrete Pipe (CP)) were constructed. Measurements of biofilm thickness and environmental factors revealed that the thickest biofilm in CP pipes reached 2000 μm, with ORP values as low as -325 mV, indicating a more suitable anaerobic microbial habitat.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers at Cracow University of Technology developed a national truck scale platform made of prestressed concrete that can support 60 tons.
  • They designed innovative post-tensioned hollow-core slabs using PVC pipes to decrease the weight, with specific dimensions and spans for enhanced performance.
  • The study included testing the slabs under repeated loads to analyze their behavior, and it outlines design principles, research methods, and suggestions for optimizing future designs.
View Article and Find Full Text PDF

Ground heat exchanger (GHE) is the most crucial element of a ground source heat pump (GSHP) system for building cooling and heating by the utilization of geothermal energy. Therefore, intending to enhance the performance of GHE, the present study conducts a computational investigation of the thermal performance of modified spiral tube vertical GHEs. Several modifications of uniform-pitched spiral GHE are made to increase its thermal performance.

View Article and Find Full Text PDF

In order to meet the needs of low-impact development and sustainable development, there is an urgent desire to develop an innovative recycled aggregate pervious concrete (I-RAPC) that is of high strength and permeability. In this study, I-RAPC was prepared based on response surface methodology (RSM) using recycled aggregate, river sand, and different types of pipes as the materials, and the effects of different pipe parameters (number, diameter, material, and distribution form) on the performance of I-RAPC were investigated. In addition, the calculation model of the compressive strength and the permeability coefficient of I-RAPC were proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!