Intercropping is practiced in modern intensive agriculture considering many benefits, including additive crop yield. However, it may have competitive or facilitative interactions between pollinator-dependant crops. Here, we investigated the reproductive aspects of pigeonpea () We assessed the influence of blooming pigeonpea on pollinator's assemblage and the yield of neighbouring non-leguminous crops (e.g., coriander, mustard). For these, we recorded floral visitors and the yield of the targeted crops from two types of fields-closely situated and distantly situated concerning pigeonpea plantation. Pigeonpea is autogamous, but pollinator's visits enhance fruit and seed sets. Bright, nectariferous flowers emitted several volatile organic compounds and were visited by numerous insect species. The prime pollinators of pigeonpea are carpenter bees and leafcutter bees. In contrast, halictidae, honeybees and stingless bees mainly pollinate the co-blooming non-leguminous crops (coriander and mustard). The richness and abundance of pollinators on these co-blooming crops remain similar in closely situated and distantly situated fields. As a result, the yield of the neighbouring crops is not significantly influenced by the blooming pigeonpea. Therefore, it can be concluded that planting pigeonpea in ridges of agricultural fields will be an additional agricultural output without affecting the assemblage of pollinators and yields of neighbouring co-blooming crops.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866136PMC
http://dx.doi.org/10.3390/life13010193DOI Listing

Publication Analysis

Top Keywords

yield neighbouring
12
non-leguminous crops
12
assemblage pollinators
8
neighbouring non-leguminous
8
crops
8
blooming pigeonpea
8
crops coriander
8
coriander mustard
8
situated distantly
8
distantly situated
8

Similar Publications

Background: Immunotherapy and radiotherapy play crucial roles in the transformation therapy of locally advanced pancreatic cancer; however, the exploration of effective predictive biomarkers has been unsatisfactory. With the rapid development of radiomics, next-generation sequencing, and machine learning, there is hope to identify biomarkers that can predict the efficacy of transformative treatment for locally advanced pancreatic cancer through simple and non-invasive clinical methods. Our study focuses on using computed tomography (CT), positron emission tomography/computed tomography (PET/CT), gene mutations, and baseline carbohydrate antigen 199 (CA199) to identify biomarkers for predicting the efficacy of transformative treatment.

View Article and Find Full Text PDF

Engineering dimer mutants of human geranylgeranyl pyrophosphate synthase.

PLoS One

January 2025

Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.

Geranylgeranyl pyrophosphate synthase (GGPPS), a key enzyme in protein prenylation, plays a critical role in cellular signal transduction and is a promising target for cancer therapy. However, the enzyme's native hexameric quaternary structure presents challenges for crystallographic studies. The primary objective of this study was to engineer dimeric forms of human GGPPS to facilitate high-resolution crystallographic analysis of its ligand binding interactions.

View Article and Find Full Text PDF

Usefulness of Comprehensive Genomic Profiling in Clinical Decision-Making in Oncology: A Systematic Review.

J Immunother Precis Oncol

February 2025

Medical Affairs Division, Roche Products India Pvt Ltd, New Delhi, India.

Biologic factors limiting responsiveness to matched targeted therapies include genomic heterogeneity and complexity. Advanced tumors with unique molecular profiles can be studied by comprehensive genomic profiling (CGP) and enhance patient outcomes using principles of precision medicine. The clinical utility of CGP across all cancer types and different therapeutic interventions using overall survival (OS) and progression-free survival (PFS) data was studied in this systematic literature review.

View Article and Find Full Text PDF

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF

As three-dimensional (3D) printing has emerged as a new manufacturing technology, the demand for high-performance 3D printable materials has increased to ensure broad applicability in various load-bearing structures. In particular, the thixotropic properties of materials, which allow them to flow under applied external forces but resist flowing otherwise, have been reported to enable rapid and high-resolution printing owing to their self-standing and easily processable characteristics. In this context, graphene nanosheets exhibit unique π-π stacking interactions between neighboring sheets, likely imparting self-standing capability to low-viscosity inks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!