Ericaceae thrive in poor soil, which we postulate is facilitated by microbes living inside those plants. Here, we investigate the growth stimulation of the American cranberry () by one of its fungal endosymbionts, EC4. We show that the symbiont resides inside the epidermal root cells of the host but extends into the rhizosphere via its hyphae. Morphological classification of this fungus is ambiguous, but phylogenetic inference based on 28S rRNA identifies EC4 as a species (Chaetosphaeriaceae, Sordariomycetes, Ascomycetes). We sequenced the genome and transcriptome of EC4, providing the first 'Omics' information of a Chaetosphaeriaceae fungus. The 55.3-Mbp nuclear genome contains 17,582 potential protein-coding genes, of which nearly 500 have the capacity to promote plant growth. For comparing gene sets involved in biofertilization, we annotated the published genome assembly of the plant-growth-promoting . The number of proteins involved in phosphate transport and solubilization is similar in the two fungi. In contrast, EC4 has ~50% more genes associated with ammonium, nitrate/nitrite transport, and phytohormone synthesis. The expression of 36 presumed plant-growth-promoting EC4 genes is stimulated when the fungus is in contact with the plant. Thus, Omics and tests make EC4 a promising candidate for cranberry biofertilization on nutrient-poor soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861600PMC
http://dx.doi.org/10.3390/jof9010126DOI Listing

Publication Analysis

Top Keywords

nuclear genome
8
ec4
6
genome sequence
4
sequence gene
4
gene expression
4
expression intracellular
4
intracellular fungal
4
fungal endophyte
4
endophyte stimulating
4
stimulating growth
4

Similar Publications

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.

View Article and Find Full Text PDF

Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!