N6-methyladenosine (m6A) modulates RNA metabolism and functions in cell differentiation, tissue development, and immune response. After acute burns, skin wounds are highly susceptible to infection and poor healing. However, our understanding of the effect of burn injuries on m6A methylation and their potential mechanism is still limited. Human m6A-mRNA&lncRNA Epitranscriptomic microarray was used to obtain comprehensive mRNA and lncRNA transcriptome m6A profiling and gene expression patterns after burn injuries in human skin tissue. Bioinformatic and functional analyses were conducted to find molecular functions. Microarray profiling showed that 65 mRNAs and 39 lncRNAs were significantly hypermethylated; 5492 mRNAs and 754 lncRNAs were significantly hypomethylated. Notably, 3989 hypomethylated mRNAs were down-expressed and inhibited many wound healing biological processes and pathways including in the protein catabolic process and supramolecular fiber organization pathway; 39 hypermethylated mRNAs were up-expressed and influenced the cell surface receptor signaling pathway and inflammatory response. Moreover, we validated that m6A regulators (METTL14, METTL16, ALKBH5, FMR1, and HNRNPC) were significantly downregulated after burn injury which may be responsible for the alteration of m6A modification and gene expression. In summary, we found that homeostasis in the skin was disrupted and m6A modification may be a potential mechanism affecting trauma infection and wound healing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864918 | PMC |
http://dx.doi.org/10.3390/jpm13010150 | DOI Listing |
Allergy Asthma Proc
January 2025
From the Division of Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, California and.
Since its first description more than a decade ago, our understanding of the clinical impact of hereditary alpha-tryptasemia has continued to evolve. First considered to be a genetic disorder with a subset of patients having a syndromic presentation composed of connective tissue abnormalities, symptoms of autonomic dysfunction, and findings of mast cell activation, we now know that hereditary alpha-tryptasemia is a common genetic trait and modifier of mast cell-mediated reactions. More recent studies have shown some previously held associations with congenital hypermobility and postural orthostatic tachycardia syndrome (POTS) to be lacking, and illuminated previously unappreciated associations with clonal and nonclonal mast cell disorders.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
Introduction: DU145 and LNCaP are classic prostate cancer cell lines. Characterizing their baseline transcriptomics profiles (without any intervention) can offer insights into baseline genetic features and oncogenic pathways that should be considered while interpreting findings after various experimental interventions such as exogenous gene transfection or drug treatment.
Methods: LNCaP and DU145 cell lines were cultured under normal conditions, followed by RNA extraction, cDNA conversion, library preparation, and RNA sequencing using the Illumina NovaSeq platform.
Biol Direct
December 2024
Urology Unit, Department of Surgery, Tor Vergata University of Rome, Rome, Italy.
Background: Prostate cancer is the most common diagnosed tumor and the fifth cancer related death among men in Europe. Although several genetic alterations such as ERG-TMPRSS2 fusion, MYC amplification, PTEN deletion and mutations in p53 and BRCA2 genes play a key role in the pathogenesis of prostate cancer, specific gene alteration signature that could distinguish indolent from aggressive prostate cancer or may aid in patient stratification for prognosis and/or clinical management of patients with prostate cancer is still missing. Therefore, here, by a multi-omics approach we describe a prostate cancer carrying the fusion of TMPRSS2 with ERG gene and deletion of 16q chromosome arm.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.
View Article and Find Full Text PDFJ Biomed Sci
January 2025
Key Laboratory of Molecular Epigenetics of Ministry of Education, College of Life Sciences, Northeast Normal University, Changchun, 130024, China.
ROS cause multiple forms of DNA damage, and among them, 8-oxoguanine (8-oxoGua), an oxidized product of guanine, is one of the most abundant. If left unrepaired, 8-oxoGua may pair with A instead of C, leading to a mutation of G: C to T: A during DNA replication. 8-Oxoguanine DNA glycosylase 1 (OGG1) is a tailored repair enzyme that recognizes 8-oxoGua in DNA duplex and initiates the base excision repair (BER) pathway to remove the lesion and ensure the fidelity of the genome.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!