(1) Background: Preeclampsia (PE) prediction in the first trimester of pregnancy is a challenge for clinicians. The aim of this study was to evaluate and compare the predictive performances of machine learning-based models for the prediction of preeclampsia and its subtypes. (2) Methods: This prospective case-control study evaluated pregnancies that occurred in women who attended a tertiary maternity hospital in Romania between November 2019 and September 2022. The patients' clinical and paraclinical characteristics were evaluated in the first trimester and were included in four machine learning-based models: decision tree (DT), naïve Bayes (NB), support vector machine (SVM), and random forest (RF), and their predictive performance was assessed. (3) Results: Early-onset PE was best predicted by DT (accuracy: 94.1%) and SVM (accuracy: 91.2%) models, while NB (accuracy: 98.6%) and RF (accuracy: 92.8%) models had the highest performance when used to predict all types of PE. The predictive performance of these models was modest for moderate and severe types of PE, with accuracies ranging from 70.6% and 82.4%. (4) Conclusions: The machine learning-based models could be useful tools for EO-PE prediction and could differentiate patients who will develop PE as early as the first trimester of pregnancy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865606 | PMC |
http://dx.doi.org/10.3390/jcm12020418 | DOI Listing |
Conventional control charts track changes in the process by using predefined process parameters. Conversely, during online monitoring, adaptive control charts modify the process parameters. To improve the process dispersion monitoring in various operational environments, this study presents an adaptive exponentially weighted moving average (AEWMA) control chart based on support vector regression (SVR).
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
The gut microbiome, recognized as a critical component in the development of chronic diseases and aging processes, constitutes a promising approach for predicting host health status. Previous research has underscored the potential of microbiome-based predictions, and the rapid advancements of machine learning techniques have introduced new opportunities for exploiting microbiome data. To predict various host nonhealthy conditions, this study proposed an integrated machine learning-based estimation pipeline of Gut Age Index (GAI) by establishing a health aging baseline with the gut microbiome data from healthy individuals.
View Article and Find Full Text PDFBioresour Technol
December 2024
School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Evaluating compost maturity, e.g. via manual seed germination index (GI) measurement, is both time-consuming and costly during composting.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100193, China. Electronic address:
Natural Xanthine oxidase (XOD) inhibitors represent promising therapeutic agents for hyperuricemia (HUA) treatment due to their potent efficacy and favorable safety profiles. This study involved the construction of a comprehensive database of 315 XOD inhibitors and development of 28 machine learning-based QSAR models. The ChemoPy light gradient boosting machine model exhibited the best performance (AUC = 0.
View Article and Find Full Text PDFSurgery
December 2024
Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. Electronic address:
Background: Duodenal stump leakage is one of the most critical complications following gastrectomy surgery, with a high mortality rate. The present study aimed to establish a predictive model based on machine learning for forecasting the occurrence of duodenal stump leakage in patients who underwent laparoscopic gastrectomy for gastric cancer.
Materials And Methods: The present study included the data of 4,070 patients with gastric adenocarcinoma who received laparoscopic gastrectomy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!