During spaceflights, astronauts face different forms of stress (e.g., socio-environmental and gravity stresses) that impact physiological functions and particularly the immune system. In this context, little is known about the effect of such stress on dendritic cells (DCs). First, we showed that hypergravity, but not chronic ultra-mild stress, a socio-environmental stress, induced a less mature phenotype characterized by a decreased expression of MHCII and co-stimulatory molecules. Next, using the random positioning machine (RPM), we studied the direct effects of simulated microgravity on either splenic DCs or Flt-3L-differentiated bone marrow dendritic cells (BMDCs). Simulated microgravity was found to reduce the BM-conventional DC (cDC) and splenic cDC activation/maturation phenotype. Consistent with this, BMDCs displayed a decreased production of pro-inflammatory cytokines when exposed to microgravity compared to the normogravity condition. The induction of a more immature phenotype in microgravity than in control DCs correlated with an alteration of the NFκB signaling pathway. Since the DC phenotype is closely linked to their function, we studied the effects of microgravity on DCs and found that microgravity impaired their ability to induce naïve CD4 T cell survival, proliferation, and polarization. Thus, a deregulation of DC function is likely to induce immune deregulation, which could explain the reduced efficiency of astronauts' immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865583 | PMC |
http://dx.doi.org/10.3390/ijms24021720 | DOI Listing |
Aerosp Med Hum Perform
January 2025
Introduction: In space, under weightlessness conditions, human brain activity is changed due to the shifting of body fluid and blood toward the cephalic region. This shifting leads to changes in cerebral hemodynamics and, consequently, neurophysiological function, which impacts mental functions like cognition and decision-making capabilities of space travelers. The present study reports the effect of acute exposure to simulated microgravity on cognitive functions and event-related potentials.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Institute of Biomedical Problems, Russian Academy of Sciences, 123007, Moscow, Russia.
One of the most obvious manifestations of the negative impact of space flight factors on the human physiology is osteopenia. With the active development of manned space flights and the increase in the duration of humans' persistence in weightlessness, there is a growing need to understand the mechanisms of changes occurring at the cellular level involved in the replenishment of bone tissue. Using the RNA sequencing method, changes in the transcriptome profile of MMSCs were studied after a 5-day simulation of the microgravity effects.
View Article and Find Full Text PDFRadiat Environ Biophys
January 2025
Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.
Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.
Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.
Cell Mol Life Sci
January 2025
Department of Aerospace Medical Training, School of Aerospace Medicine, Fourth Military Medical University, 169 Chang Le Xi Road, Xi'an, 710032, China.
Background: Prolonged spaceflight is known to cause vascular deconditioning and remodeling. Tail suspension, a widely used spaceflight analog, is reported to result in vascular remodeling of rats. However, little is known about the cellular atlas of the heterogeneous cells of CA and FA from hindlimb-unloaded rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!