Jasmonic acid (JA) regulates the production of several plant volatiles that are involved in plant defense mechanisms. In this study, we report that the JA-responsive volatile apocarotenoid, β-cyclocitral (β-cyc), negatively affects abscisic acid (ABA) biosynthesis and induces a defense response against pv. (), which causes bacterial blight in rice ( L.). JA-induced accumulation of β-cyc was regulated by OsJAZ8, a repressor of JA signaling in rice. Treatment with β-cyc induced resistance against and upregulated the expression of defense-related genes in rice. Conversely, the expression of ABA-responsive genes, including ABA-biosynthesis genes, was downregulated by JA and β-cyc treatment, resulting in a decrease in ABA levels in rice. β-cyc did not inhibit the ABA-dependent interactions between OsPYL/RCAR5 and OsPP2C49 in yeast cells. Furthermore, we revealed that JA-responsive rice carotenoid cleavage dioxygenase 4b (OsCCD4b) was localized in the chloroplast and produced β-cyc both in vitro and in planta. These results suggest that β-cyc plays an important role in the JA-mediated resistance against in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866013PMC
http://dx.doi.org/10.3390/ijms24021704DOI Listing

Publication Analysis

Top Keywords

bacterial blight
8
negatively abscisic
8
abscisic acid
8
rice
7
β-cyc
7
jasmonic acid-induced
4
acid-induced β-cyclocitral
4
β-cyclocitral confers
4
confers resistance
4
resistance bacterial
4

Similar Publications

Design, Synthesis, and Antibacterial Activity of Novel Sulfone Derivatives Containing a 1,2,4-Triazolo[4,3-]Pyridine Moiety.

J Agric Food Chem

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.

To develop antibacterial agents with a novel mechanism of action, a series of sulfone compounds containing a 1,2,4-triazolo[4,3-]pyridine were designed and synthesized by progressive molecular structure optimization. The antibacterial activities of some derivatives against the four plant pathogens (), (), (), and () were evaluated. Among them, compound demonstrated significant antibacterial activities against , , and , with EC values of 1.

View Article and Find Full Text PDF

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Non-adapted bacterial infection suppresses plant reproduction.

Sci Adv

January 2025

School of Life Sciences and Biotechnology, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Environmental stressors, including pathogens, substantially affect the growth of host plants. However, how non-adapted bacteria influence nonhost plants has not been reported. Here, we reveal that infection of flowers by pv.

View Article and Find Full Text PDF

Identification and Genome Sequencing of Novel Virulent Strains of pv. Causing Rice Bacterial Blight in Zhejiang, China.

Pathogens

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China.

pv. () is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research.

View Article and Find Full Text PDF

Pathogenomic Insights into pv. 's Resistome, Virulome, and Diversity for Improved Rice Blight Management.

Life (Basel)

December 2024

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia.

(rice) is a major staple food targeted for increased production to achieve food security. However, increased production is threatened by several biotic and abiotic factors, of which bacterial blight disease caused by pathovar is severe. Developing effective control strategies requires an up-to-date understanding of its pathogenomics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!