Curcumin Reduces Pathological Endoplasmic Reticulum Stress through Increasing Proteolysis of Mutant Matrilin-3.

Int J Mol Sci

International Centre for Life, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK.

Published: January 2023

The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3. Therefore, this is an important in vitro study in which we describe, for the first time, the success of a naturally occurring chemical as a potential treatment for this currently incurable rare skeletal disease. As studies show that curcumin can be used as a potential treatment for range of diseases in vitro, current research is focused on developing novel delivery strategies to enhance its bioavailability. This is an important and exciting area of research that will have significant clinical impact on a range of human diseases including the rare skeletal disease, EDM5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867355PMC
http://dx.doi.org/10.3390/ijms24021496DOI Listing

Publication Analysis

Top Keywords

mutant matrilin-3
12
pathological endoplasmic
8
endoplasmic reticulum
8
reticulum stress
8
retention mutant
8
proven successful
8
potential treatment
8
rare skeletal
8
skeletal disease
8
stress
6

Similar Publications

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues.

View Article and Find Full Text PDF

Cartilage oligomeric matrix protein (COMP), an extracellular matrix protein, has been shown to enhance proliferation and mechanical integrity in the matrix, supporting functions of the growth plate and articular cartilage. Mutations in COMP cause pseudoachondroplasia (PSACH), a severe dwarfing condition associated with premature joint degeneration and significant lifelong joint pain. The MT (mutant)-COMP mouse mimics PSACH with decreased limb growth, early joint degeneration and pain.

View Article and Find Full Text PDF

Mutations in cartilage oligomeric matrix protein (COMP) causes protein misfolding and accumulation in chondrocytes that compromises skeletal growth and joint health in pseudoachondroplasia (PSACH), a severe dwarfing condition. Using the MT-COMP mice, a murine model of PSACH, we showed that pathological autophagy blockage was key to the intracellular accumulation of mutant-COMP. Autophagy is blocked by elevated mTORC1 signaling, preventing ER clearance and ensuring chondrocyte death.

View Article and Find Full Text PDF

The intracellular retention of mutant cartilage matrix proteins and pathological endoplasmic reticulum (ER) stress disrupts ossification and has been identified as a shared disease mechanism in a range of skeletal dysplasias including short limbed-dwarfism, multiple epiphyseal dysplasia type 5 (EDM5). Although targeting ER stress is an attractive avenue for treatment and has proven successful in the treatment of a related skeletal dysplasia, to date no drugs have proven successful in reducing ER stress in EDM5 caused by the retention of mutant matrilin-3. Our exciting findings show that by using our established luciferase ER stress screening assay, we can identify a "natural" chemical, curcumin, which is able to reduce pathological ER stress in a cell model of EDM5 by promoting the proteasomal degradation mutant matrilin-3.

View Article and Find Full Text PDF

In vitro and in silico analysis of a E559K mutation on cartilage oligomeric matrix protein.

Mutat Res

May 2022

Reproductive Medical Center of Gynecology and Obstetrics Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, Liaoning, China. Electronic address:

Pseudoachondroplasia (PSACH) is known as an autosomal dominant disorder associated with mutations in the gene of cartilage oligomeric matrix protein (COMP). The pathomolecular mechanisms of PSACH as a result of C-terminal globular region (CTD) mutations remain unclear. A heterozygous mutation (E559 K) in a Chinese family diagnosed with PSACH was reported in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!