G-quadruplexes (G4s) are of vital biological significance and G4-specific ligands with conformational selectivity show great application potential in disease treatment and biosensing. RHAU, a RNA helicase associated with AU-rich element, exerts biological functions through the mediation of G4s and has been identified to be a G4 binder. Here, we investigated the interactions between the RHAU peptide and G4s with different secondary structures using size exclusion chromatography (SEC) in association with circular dichroism (CD), ultraviolet-visible (UV-Vis) absorption, and native polyacrylamide gel electrophoresis (Native-PAGE). Spectral results demonstrated that the RHAU peptide did not break the main structure of G4s, making it more reliable for G4 structural analysis. The RHAU peptide was found to display a structural selectivity for a preferential binding to parallel G4s as reflected by the distinct chromatographic retention behaviors. In addition, the RHAU peptide exhibited different interactions with intermolecular parallel G4s and intramolecular parallel G4s, providing a novel recognition approach to G4 structures. The findings of this study enriched the insight into the binding of RHAU to G4s with various conformations. It is noteworthy that SEC technology can be easy and reliable for elucidating G4-peptide interactions, especially for a multiple G4 coexisting system, which supplied an alternative strategy to screen novel specific ligands for G4s.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866954 | PMC |
http://dx.doi.org/10.3390/ijms24021438 | DOI Listing |
Molecules
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
G-quadruplex (G4), an important secondary structure of nucleic acids, is polymorphic in structure. G4 monomers can associate with each other to form multimers, which show better application performance than monomers in some aspects. G4 dimers, the simplest and most widespread multimeric structures, are often used as a representative for studying multimers.
View Article and Find Full Text PDFCurr Res Struct Biol
January 2024
Faculty of Biotechnology, Ho Chi Minh City Open University, HCMC, Viet Nam.
G-quadruplexes (G4s) are reported to present on the SARS-CoV-2 RNA genome and control various viral activities. Specific ligands targeting those viral nucleic acid structures could be investigated as promising detection methods or antiviral reagents to suppress this menacing virus. Herein, we demonstrate the binding between a G4 structure in the RNA of SARS-CoV-2 and a fluorescent probe created by fusing a parallel-G4 specific RHAU53 and a cyan fluorescent protein.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering and Center of Materials Analysis, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China.
G-quadruplexes (G4s) are of vital biological significance and G4-specific ligands with conformational selectivity show great application potential in disease treatment and biosensing. RHAU, a RNA helicase associated with AU-rich element, exerts biological functions through the mediation of G4s and has been identified to be a G4 binder. Here, we investigated the interactions between the RHAU peptide and G4s with different secondary structures using size exclusion chromatography (SEC) in association with circular dichroism (CD), ultraviolet-visible (UV-Vis) absorption, and native polyacrylamide gel electrophoresis (Native-PAGE).
View Article and Find Full Text PDFChem Commun (Camb)
October 2022
School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
G-quadruplexes (G4s) are attractive anticancer targets. While right-handed G4s have been extensively investigated with many specific ligands reported, left-handed G4s formed by natural DNA have been recently discovered. Here we show that ligands specific for right-handed G4s, such as Phen-DC and RHAU peptide, do not bind specifically to left-handed G4s.
View Article and Find Full Text PDFMol Biotechnol
March 2023
Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam.
G-quadruplexes (G4s) are non-canonical nucleic acid structures formed by guanine (G)-rich sequences, which are ubiquitously found in the human genome and transcriptome. Targeting G4s by specific ligands provides a powerful tool to monitor and regulate G4s-associated biological processes. RHAU peptides, derived from the G4-binding motif of "RNA Helicase associated with AU-rich element" (RHAU), have emerged as extraordinary ligands for specific recognition of parallel G4s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!