Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chickpea ( L.) production is highly susceptible to heat stress (day/night temperatures above 32/20 °C). Identifying the molecular mechanisms and potential candidate genes underlying heat stress response is important for increasing chickpea productivity. Here, we used an RNA-seq approach to investigate the transcriptome dynamics of 48 samples which include the leaf and root tissues of six contrasting heat stress responsive chickpea genotypes at the vegetative and reproductive stages of plant development. A total of 14,544 unique, differentially expressed genes (DEGs) were identified across different combinations studied. These DEGs were mainly involved in metabolic processes, cell wall remodeling, calcium signaling, and photosynthesis. Pathway analysis revealed the enrichment of metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction, under heat stress conditions. Furthermore, heat-responsive genes encoding bHLH, ERF, WRKY, and MYB transcription factors were differentially regulated in response to heat stress, and candidate genes underlying the quantitative trait loci (QTLs) for heat tolerance component traits, which showed differential gene expression across tolerant and sensitive genotypes, were identified. Our study provides an important resource for dissecting the role of candidate genes associated with heat stress response and also paves the way for developing climate-resilient chickpea varieties for the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9865869 | PMC |
http://dx.doi.org/10.3390/ijms24021369 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!