The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry. We used HEK 293 cells stably expressing CCP6-BirA* to identify 37 putative interactors of this enzyme. This list of CCP6 proximal proteins displayed enrichment of proteins associated with the centrosome and centriolar satellites, indicating that CCP6 could be present in the pericentriolar material. In addition, we identified cilium assembly-related proteins as putative interactors of CCP6. In addition, the CCP6 proximal partner list included five proteins associated with the Joubert syndrome, a ciliopathy linked to defects in polyglutamylation. Using the proximity ligation assay (PLA), we show that PCM1, PIBF1, and NudC are true CCP6 physical interactors. Therefore, the BioID methodology confirms the location and possible functional role of CCP6 in centrosomes and centrioles, as well as in the formation and maintenance of primary cilia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867282 | PMC |
http://dx.doi.org/10.3390/ijms24021273 | DOI Listing |
EMBO J
November 2024
Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
Polyglutamylation is a reversible posttranslational modification that is catalyzed by enzymes of the tubulin tyrosine ligase-like (TTLL) family. Here, we found that TTLL11 generates a previously unknown type of polyglutamylation that is initiated by the addition of a glutamate residue to the free C-terminal carboxyl group of a substrate protein. TTLL11 efficiently polyglutamylates the Wnt signaling protein Dishevelled 3 (DVL3), thereby changing the interactome of DVL3.
View Article and Find Full Text PDFBMC Biol
May 2023
School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Building 24, Room 417-8, Tianjin, 300072, China.
Background: The axonemal microtubules of primary cilium undergo a conserved protein posttranslational modification (PTM) - polyglutamylation. This reversible procedure is processed by tubulin tyrosine ligase-like polyglutamylases to form secondary polyglutamate side chains, which are metabolized by the 6-member cytosolic carboxypeptidase (CCP) family. Although polyglutamylation modifying enzymes have been linked to ciliary architecture and motility, it was unknown whether they also play a role in ciliogenesis.
View Article and Find Full Text PDFInt J Mol Sci
January 2023
Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
The cytosolic carboxypeptidase 6 (CCP6) catalyzes the deglutamylation of polyglutamate side chains, a post-translational modification that affects proteins such as tubulins or nucleosome assembly proteins. CCP6 is involved in several cell processes, such as spermatogenesis, antiviral activity, embryonic development, and pathologies like renal adenocarcinoma. In the present work, the cellular role of CCP6 has been assessed by BioID, a proximity labeling approach for mapping physiologically relevant protein-protein interactions (PPIs) and bait proximal proteins by mass spectrometry.
View Article and Find Full Text PDFProtein Expr Purif
September 2022
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China. Electronic address:
CCP6 is a member of cytosolic carboxypeptidases (CCPs) family, an eraser of a reversible protein posttranslational modification - polyglutamylation, and represents a potential therapeutic target. Currently, production of CCPs mainly depends on eukaryotic expression system, which is time-consuming and costly. Here, we reported that mouse origin full-length CCP6 can be successfully expressed in the soluble fraction of bacteria ArcticExpress (DE3) strain.
View Article and Find Full Text PDFFront Immunol
May 2022
Immune-inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
C4b-binding protein (C4BP) is a well-known regulator of the complement system that holds additional and important activities unrelated to complement inhibition. Recently, we have described a novel immunomodulatory activity in the minor C4BP(β-) isoform directly acting over inflammatory phagocytes. Here we show that incorporation of the β-chain to the C4BP α-chain oligomer interferes with this immunomodulatory activity of C4BP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!