Biometals are all metal ions that are essential for all living organisms. About 40% of all enzymes with known structures require biometals to function correctly. The main target of damage by biometals is the central nervous system (CNS). Biometal dysregulation (metal deficiency or overload) is related to pathological processes. Chronic occupational and environmental exposure to biometals, including iron and copper, is related to an increased risk of developing Parkinson's disease (PD). Indeed, biometals have been shown to induce a dopaminergic neuronal loss in the substantia nigra. Although the etiology of PD is still unknown, oxidative stress dysregulation, mitochondrial dysfunction, and inhibition of both the ubiquitin-proteasome system (UPS) and autophagy are related to dopaminergic neuronal death. Herein, we addressed the involvement of redox-active biometals, iron, and copper, as oxidative stress and neuronal death inducers, as well as the current metal chelation-based therapy in PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9867532PMC
http://dx.doi.org/10.3390/ijms24021256DOI Listing

Publication Analysis

Top Keywords

dopaminergic neuronal
12
neuronal death
12
redox-active biometals
8
metal chelation-based
8
chelation-based therapy
8
parkinson's disease
8
disease biometals
8
iron copper
8
oxidative stress
8
biometals
7

Similar Publications

Neuroinflammation plays a crucial role in the pathogenesis of Parkinson's disease (PD). Transformation of pro-interleukin (IL)-1β into a mature IL-1β via active inflammasome may be related to the progression of PD. Therefore, the modification of inflammasome activity may be a potential therapeutic strategy for PD.

View Article and Find Full Text PDF

Schizophrenia is a mental disorder characterized by positive, negative, and cognitive symptoms which is treated with antipsychotics. However, these drugs present several side effects and, some schizophrenia symptoms, like cognitive, are difficult to treat. The peroxisome proliferator-activated receptors-gamma (PPAR-γ) are expressed in dopaminergic neurons of the midbrain participating in the modulation of neurotransmitters release like dopamine.

View Article and Find Full Text PDF

Mechanism of S100A9-mediated astrocyte activation via TLR4/NF-κB in Parkinson's disease.

Int Immunopharmacol

December 2024

Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Astrocyte-mediated neuroinflammation plays a key role in Parkinson's disease (PD) progression. The proinflammatory protein S100A9 is linked to various neurodegenerative diseases, but its involvement in astrocyte activation in PD remains unclear. Here, we investigate the role of S100A9 in astrocyte-mediated neuroinflammation in PD.

View Article and Find Full Text PDF

Curcumin prevents neurodegeneration by blocking HDAC6-NLRP3 pathway-dependent neuroinflammation in Parkinson's disease.

Int Immunopharmacol

December 2024

Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan 523808, Guangdong, PR China. Electronic address:

Curcumin is a hydrophobic polyphenolic compound with potent anti-inflammatory properties. However, whether it can achieve therapeutic effects by alleviating neuroinflammation in patients with Parkinson's disease (PD) and its potential mechanism are still unknown. This study explored the effects of curcumin on neuroinflammation in dopaminergic neurons and deciphered its direct target in the histone deacetylase 6 (HDAC6)-Nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) pathway, revealing the potential role of curcumin in the treatment of Parkinson's disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) is an age-related neurodegenerative pathology of the central nervous system. The well-known abnormalities characteristic of PD are dysfunctions in the nigrostriatal system including the substantia nigra of the midbrain and the striatum. Moreover, in PD persons, alpha-synucleinopathy is associated with abnormalities in the dopaminergic brain system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!