SnRK1 protein kinase plays hub roles in plant carbon and nitrogen metabolism. However, the function of SnRK1 in legume nodulation and symbiotic nitrogen fixation is still elusive. In this study, we identified GmNodH, a putative sulfotransferase, as an interacting protein of GmSnRK1 by yeast two-hybrid screen. The qRT-PCR assays indicate that gene is highly expressed in soybean roots and could be induced by rhizobial infection and nitrate stress. Fluorescence microscopic analyses showed that GmNodH was colocalized with GsSnRK1 on plasma membrane. The physical interaction between GmNodH and GmSnRK1 was further verified by using split-luciferase complementary assay and pull-down approaches. In vitro phosphorylation assay showed that GmSnRK1 could phosphorylate GmNodH at Ser193. To dissect the function and genetic relationship of GmSnRK1 and GmNodH in soybean, we co-expressed the wild-type and mutated and genes in soybean hairy roots and found that co-expression of / genes significantly promoted soybean nodulation rates and the expression levels of nodulation-related and genes. Taken together, this study provides the first biological evidence that GmSnRK1 may interact with and phosphorylate GmNodH to synergistically regulate soybean nodulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861110PMC
http://dx.doi.org/10.3390/ijms24021225DOI Listing

Publication Analysis

Top Keywords

soybean nodulation
12
phosphorylate gmnodh
8
soybean
6
gmnodh
6
gmsnrk1
5
role gmsnrk1-gmnodh
4
gmsnrk1-gmnodh module
4
module regulating
4
regulating soybean
4
nodulation
4

Similar Publications

The beta-rhizobial strain Paraburkholderia phymatum STM815 is noteworthy for its wide host range in nodulating legumes, primarily mimosoids (over 50 different species) but also some papilionoids. It cannot, however, nodulate soybean (Glycine max [L.] Merr.

View Article and Find Full Text PDF

A Comprehensive Transcriptome Atlas Reveals the Crucial Role of LncRNAs in Maintaining Nodulation Homeostasis in Soybean.

Adv Sci (Weinh)

December 2024

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.

Symbiotic nitrogen fixation (SNF) provides nitrogen for soybean. A primary challenge in enhancing yield through efficient SNF lies in striking a balance between its high energy consumption and plant growth. However, the systemic transcriptional reprogramming during nodulation remains limited.

View Article and Find Full Text PDF

Unlocking the small RNAs: local and systemic modulators for advancing agronomic enhancement.

J Genet Genomics

December 2024

Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, CAS, Beijing 100101, China. Electronic address:

Small regulatory RNAs (sRNAs) are essential regulators of gene expression across a wide range of organisms to precisely modulate gene activity based on sequence-specific recognition. In model plants like Arabidopsis thaliana, extensive research has primarily concentrated on 21 to 24-nucleotide (nt) sRNAs, particularly microRNAs (miRNAs). Recent advancements in cell and tissue isolation techniques, coupled with advanced sequencing technologies, are revealing a diverse array of preciously uncharacterized sRNA species.

View Article and Find Full Text PDF

Background: Efficient capture and use of resources is critical for optimal plant growth and productivity. Both shoot and root growth are essential for resource acquisition, namely light and CO by the shoot and water and mineral nutrients by roots. Soybean [Glycine max (L.

View Article and Find Full Text PDF

We herein investigated the effects of salt (NaCl) stress on soybean nodulation by rhizobial strains. We specifically exami-ned: (1) the effects of NaCl on nodule maturity and positioning by inoculating three rhizobial strains (Bradyrhizobium diazoefficiens USDA110, Bradyrhizobium elkanii USDA31, and Sinorhizobium fredii USDA191) onto soybean variety CNS, (2) the effects of the NaCl treatment on isoflavones (daidzein and genistein) secretion by CNS, (3) the effects of the NaCl treatment on gene expression induced by daidzein and genistein in rhizobia, and (4) the effects of the NaCl treatment on rhizobial growth. The results obtained were as follows: (1) the NaCl treatment delayed nodule development and reduced nodulation on the primary root following the USDA110 inoculation, minimal sensitivity regarding nodule formation in the USDA 31 inoculation, and significantly increased the mature nodule number and nodules on the primary root following the USDA 191 inoculation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!