The matrix (M) protein of Newcastle disease virus (NDV) contains large numbers of unevenly distributed basic residues, but the precise function of most basic residues in the M protein remains enigmatic. We previously demonstrated that the C-terminus (aa 264-313) of M protein interacted with the extra-terminal (ET) domain of chicken bromodomain-containing protein 2 (chBRD2), which promoted NDV replication by downregulating chBRD2 expression and facilitating viral RNA synthesis and transcription. However, the key amino acid sites determining M's interaction with chBRD2/ET and their roles in the replication and pathogenicity of NDV are not known. In this study, three basic residues-R283, R286, and K288-in the NDV M protein were verified to be responsible for its interaction with chBRD2/ET. In addition, mutation of these basic residues (R283A/R286A/K288A) in the M protein changed its electrostatic pattern and abrogated the decreased expression of endogenic chBRD2. Moreover, a recombinant virus harboring these mutations resulted in a pathotype change of NDV and attenuated viral replication and pathogenicity in chickens due to the decreased viral RNA synthesis and transcription. Our findings therefore provide a better understanding of the crucial biological functions of M's basic residues and also aid in understanding the poorly understood pathogenesis of NDV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9864103 | PMC |
http://dx.doi.org/10.3390/ijms24020980 | DOI Listing |
RSC Adv
January 2025
College of Agriculture and Biological Science, Dali University Dali 671000 China
The conformational dynamics and activation mechanisms of KRAS proteins are of great importance for targeted cancer therapy. However, the detailed molecular mechanics of KRAS activation induced by GTP binding remains unclear. In this study, we systematically investigated how GTP/GDP exchange affects the thermodynamic and kinetic properties of KRAS and explored the activation mechanism using molecular dynamics (MD) simulations, Markov state models (MSMs), and neural relational inference (NRI) models.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia.
Previous research indicates that Transforming growth factor beta-3 (TGFβ3) expression levels correlate with breast cancer metastasis, and elevated TGFβ3 levels have been linked with poor overall survival in breast cancer patients. The study used computational methods to examine curcumin's effects on TGFβ3, a chemical with antiviral and anticancer characteristics. The curcumin has low Molecular Weight 368.
View Article and Find Full Text PDFPLoS Pathog
January 2025
State Key Laboratory of Respiratory Disease, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China.
The viral protein mutations can modify virus-host interactions during virus evolution, and thus alter the extent of infection or pathogenicity. Studies indicate that nucleocapsid (N) protein of SARS-CoV-2 participates in viral genome assembly, intracellular signal regulation and immune interference. However, its biological function in viral evolution is not well understood.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea.
This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in . Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health.
View Article and Find Full Text PDFPLoS Genet
January 2025
Biomedical Science Graduate Program, University of California San Diego, San Diego, California, United States of America.
Proteins with nuclear localization sequences (NLSs) are directed into the cell nucleus through interactions between the NLS and importin proteins. NLSs are generally short motifs rich in basic amino acids; however, identifying NLSs can be challenging due to the lack of a universally conserved sequence. In this study, we characterized the sequence specificity of an essential and conserved NLS in Mcm3, a subunit of the replicative DNA helicase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!