Despite its importance in somatic cells and during spermatogenesis, little is known about the role that autophagy may play in ejaculated spermatozoa. Our aim was to investigate whether the molecular components of autophagy, such as microtubule-associated protein 1 light chain 3 (LC3), are activated in stallion spermatozoa during the capacitation and acrosome reaction and if this activation could modulate these biological processes. To analyze the autophagy turnover, LC3I and LC3II proteins were assessed by western blotting, and the ratio between both proteins (LC3II/LC3I) was calculated. In somatic cells, this ratio indicates that autophagy has been activated and similar LC3 processing has been described in mammalian spermatozoa. The subcellular localization of autophagy-related proteins was assessed by immunofluorescence with specific antibodies that recognized Atg16, Beclin-1, and LC3. The colocalization of acrosomal membranes (PNA) and LC3 was studied by confocal microcopy, and the acrosome reacted cells were quantified by flow cytometry. The incubation of stallion sperm in capacitating conditions (BWW; 3 h) significantly increased LC3 processing. This increment was three to four times higher after the induction of the acrosome reaction in these cells. LC3 was mainly expressed in the head in mature ejaculated sperm showing a clear redistribution from the post-acrosomal region to the acrosome upon the incubation of sperm in capacitating conditions (BWW, 3 h). After the induction of the acrosome reaction, LC3 colocalized with the acrosome or the apical plasmalemma membranes in the head of the stallion spermatozoa. The inhibition or activation of autophagy-related pathways in the presence of autophagy activators (STF-62247) or inhibitors (E-64d, chloroquine) significantly increased LC3 processing and increased the percent of acrosome reacted cells, whereas 3-methyladenine almost completely inhibited LC3 processing and the acrosome reaction. In conclusion, we found that sperm capacitation and acrosome reaction could be regulated by autophagy components in sperm cells ex vivo by processes that might be independent of the intraluminal pH of the acrosome and dependent of LC3 lipidation. It can be speculated that, in stallion sperm, a form of noncanonical autophagy utilizes some components of autophagy machinery to facilitate the acrosome reaction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9862423PMC
http://dx.doi.org/10.3390/ijms24020937DOI Listing

Publication Analysis

Top Keywords

acrosome reaction
28
lc3 processing
16
acrosome
13
capacitation acrosome
12
lc3
11
autophagy
9
sperm capacitation
8
acrosomal membranes
8
somatic cells
8
components autophagy
8

Similar Publications

Understanding the Crucial Role of Seminal Plasma Exosomes in Bull Fertility: A Review.

Reprod Domest Anim

December 2024

Animal Reproduction, Gynaecology and Obstetrics, Artificial Breeding Research Centre (ABRC), ICAR-National Dairy Research Institute, Karnal, Haryana, India.

Bull fertility is a multi-factorial trait and is affected by many factors, such as nutrition, genetics, and epigenetics. Superior quality male germplasm with high genetic merit helps to improve the livestock production trait. To achieve the target of livestock production, the availability of superior male germplasm is a great concern.

View Article and Find Full Text PDF

Phosphatidylserine on sperm head interact with Annexin A5 on oviduct luminal cilia to form a sperm reservoir in pigs.

Eur J Cell Biol

December 2024

INRAE, CNRS, University of Tours, Physiologie de la Reproduction et des comportements, Center INRAE Val-de-Loire, Nouzilly, France. Electronic address:

After insemination, a subpopulation of sperm reaches the oviducts and binds to isthmic epithelial cells to form a "sperm reservoir". Our objective was to explore the role of annexin A5 (ANXA5), a protein that binds with high affinity to phosphatidylserine (PS), in the formation of the sperm reservoir in pigs. Phosphatidylserine was detected on the head of approximately 10 % of boar sperm at ejaculation.

View Article and Find Full Text PDF

Sphingolipids modulate redox signalling during human sperm capacitation.

Hum Reprod

December 2024

Experimental Medicine Division, Department of Medicine, McGill University, Montréal, QC, Canada.

Study Question: What role do sphingolipids have in mediating human sperm capacitation?

Summary Answer: Sphingosine 1-phosphate (S1P) mediates the acquisition of fertilizing competency in human spermatozoa by engaging with its Gi-coupled receptor S1PR1 and promoting production of reactive oxygen species such as nitric oxide and superoxide anion.

What Is Known Already: Bioactive sphingolipids, such as S1P, are fundamental for regulating numerous physiological domains and processes, such as cell membranes and signalling, cell death and proliferation, cell migration and invasiveness, inflammation, and central nervous system development.

Study Design, Size, Duration: Semen samples were obtained from a cohort of 10 healthy non-smoking volunteers (18-30 years old) to investigate the role of S1P in sperm.

View Article and Find Full Text PDF

The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage.

View Article and Find Full Text PDF

Pentoxifylline (PTX) is a widely used pharmacological agent for the selection of motile sperm in both normozoospermic and asthenozoospermic ejaculates prior to their use in assisted reproductive technologies (ARTs), e.g. intracytoplasmic sperm injection (ICSI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!