Differential Effects of Endocannabinoids on Amyloid-Beta Aggregation and Toxicity.

Int J Mol Sci

School of Pharmacy, Health Sciences Campus, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Published: January 2023

The regulation and metabolism of the endocannabinoid system has received extensive attention for their potential neuroprotective effect in neurodegenerative diseases such as Alzheimer's disease (AD), which is characterized by amyloid β (Aβ) -induced cell toxicity, inflammation, and oxidative stress. Using in vitro techniques and two cell lines, the mouse hippocampus-derived HT22 cells and Chinese hamster ovary (CHO) cells expressing human cannabinoid receptor type 1 (CB1), we investigated the ability of endocannabinoids to inhibit Aβ aggregation and protect cells against Aβ toxicity. The present study provides evidence that endocannabinoids N-arachidonoyl ethanol amide (AEA), noladin and O-arachidonoyl ethanolamine (OAE) inhibit Aβ42 aggregation. They were able to provide protection against Aβ42 induced cytotoxicity via receptor-mediated and non-receptor-mediated mechanisms in CB1-CHO and HT22 cells, respectively. The aggregation kinetic experiments demonstrate the anti-Aβ aggregation activity of some endocannabinoids (AEA, noladin). These data demonstrate the potential role and application of endocannabinoids in AD pathology and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861930PMC
http://dx.doi.org/10.3390/ijms24020911DOI Listing

Publication Analysis

Top Keywords

ht22 cells
8
aea noladin
8
endocannabinoids
5
aggregation
5
differential effects
4
effects endocannabinoids
4
endocannabinoids amyloid-beta
4
amyloid-beta aggregation
4
aggregation toxicity
4
toxicity regulation
4

Similar Publications

Ethnopharmacological Relevance: Schisandra chinensis (Turcz.) Baill (S. chinensis), first recorded in Shennong's Classic of the Materia Medica, is described as a "top grade medicine".

View Article and Find Full Text PDF

NGR1 reduces neuronal apoptosis through regulation of ITGA11 following subarachnoid hemorrhage.

Mol Med Rep

March 2025

State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, SAR 999078, P.R. China.

Subarachnoid hemorrhage (SAH), a prevalent cerebrovascular condition associated with a high mortality rate, frequently results in neuronal apoptosis and an unfavorable prognosis. The adjunctive use of traditional Chinese medicine (TCM) with surgical interventions exerts a therapeutic impact on SAH, potentially by facilitating apoptosis. However, the mechanism by which TCM mediates apoptosis following SAH remains unclear.

View Article and Find Full Text PDF

Postoperative cognitive dysfunction (POCD) is a prevalent clinical issue following anesthesia and surgery. The onset of POCD, which is closely linked to circadian rhythm disturbance in previous studies, yet the underlying mechanism remains elusive. There is increasing evidence showed that mitochondrial architecture is coordinated by the circadian clock which DRP1 playing a crucial role.

View Article and Find Full Text PDF

Sevoflurane (Sev) is a widely applied anesthetic in clinical practice; however, it could induce neurotoxicity and lead to postoperative cognitive dysfunction (POCD). This study aimed to investigate the role and underlying mechanism of circHOMER1 in Sev-induced neurotoxicity and POCD. Sev treated mouse hippocampal neuronal HT22 cells and SD rats.

View Article and Find Full Text PDF

Vascular dementia (VD) is a neurocognitive disorder resulting from cerebral vascular disorders, leading to the demise of neurons and cognitive deficits, posing significant health concerns globally. Derived from Ginkgo biloba leaves, EGb761 is a potent bioactive compound widely recognized for its benefits in treating cerebrovascular diseases. Previous studies have demonstrated that the administration of EGb761 to VD rats enhances the proliferation, differentiation, and migration of neurons, effectively alleviating cognitive dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!