The purpose of the study was to compare methods for estimating energy expenditure (EE) and physical activity (PA) intensity during a 30 min session of active virtual reality (VR) gaming. Eight individuals (age = 25.4 ± 2.0 yrs) participated, with a maximal oxygen consumption (VO2max) of 41.3 ± 5.7 mL∙kg−1∙min−1. All tests were conducted over two days. An incremental test to determine the VO2max when running was performed on day 1, while 30 min of active VR gaming was performed on day 2. The instruments used for EE estimations and PA measurements were indirect calorimetry, a heart rate (HR) monitor, and waist- and wrist-worn accelerometer. Compared to indirect calorimetry, waist-worn accelerometers underestimated EE (mean difference: −157.3 ± 55.9 kcal, p < 0.01) and PA levels. HR-based equations overestimated EE (mean difference: 114.8 ± 39.0 kcal, p < 0.01 and mean difference: 141.0 ± 81.6 kcal, p < 0.01). The wrist-worn accelerometer was the most accurate in estimating EE (mean difference: 23.9 ± 45.4 kcal, p = 0.95). The large variations in EE have implications for population-based surveillance of PA levels and for clinical studies using active VR gaming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9863016PMC
http://dx.doi.org/10.3390/ijerph20021548DOI Listing

Publication Analysis

Top Keywords

kcal 001
12
energy expenditure
8
expenditure physical
8
physical activity
8
active virtual
8
virtual reality
8
reality gaming
8
performed day
8
active gaming
8
indirect calorimetry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!