An Improved Machine Learning Approach for Optimizing Dust Concentration Estimation in Open-Pit Mines.

Int J Environ Res Public Health

State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou 221116, China.

Published: January 2023

Dust is a severe environmental issue in open-pit mines, and accurate estimation of its concentration allows for viable solutions for its control and management. This research proposes a machine learning-based solution for accurately estimating dust concentrations. The proposed approach, tested using real data from the Haerwusu open-pit coal mine in China, is based upon the integrated random forest-Markov chain (RF-MC) model. The random forest method is used for estimation, while the Markov chain is used for estimation correction. The wind speed, temperature, humidity, and atmospheric pressure are used as inputs, while PM2.5, PM10, and TSP are taken as estimated outputs. A detailed procedure for implementing the RF-MC is presented, and the estimated performance is analyzed. The results show that after correction, the root mean squared error significantly decreased from 7.40 to 2.56 μg/m for PM2.5, from 15.73 to 5.28 μg/m for PM10, and from 18.99 to 6.27 μg/m for TSP, and the Pearson correlation coefficient and the mean absolute error also improved considerably. This work provides an improved machine learning approach for dust concentration estimation in open-pit coal mines, with a greater emphasis on simplicity and rapid model updates, which is more applicable to ensure the prudent use of water resources and overall environmental conservation, both of which are advantageous to green mining.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859337PMC
http://dx.doi.org/10.3390/ijerph20021353DOI Listing

Publication Analysis

Top Keywords

improved machine
8
machine learning
8
learning approach
8
dust concentration
8
concentration estimation
8
estimation open-pit
8
open-pit mines
8
open-pit coal
8
estimation
5
approach optimizing
4

Similar Publications

Imaging-based spatial transcriptomics (iST), such as MERFISH, CosMx SMI, and Xenium, quantify gene expression level across cells in space, but more importantly, they directly reveal the subcellular distribution of RNA transcripts at the single-molecule resolution. The subcellular localization of RNA molecules plays a crucial role in the compartmentalization-dependent regulation of genes within individual cells. Understanding the intracellular spatial distribution of RNA for a particular cell type thus not only improves the characterization of cell identity but also is of paramount importance in elucidating unique subcellular regulatory mechanisms specific to the cell type.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) has reached a significant level of maturity in biology, demonstrated by the diversity of modes for obtaining not only topographical images but also insightful mechanical and adhesion data by performing force measurements on delicate samples with a controlled environment (e.g., liquid, temperature, pH).

View Article and Find Full Text PDF

Strategies to increase the robustness of microbial cell factories.

Adv Biotechnol (Singap)

March 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.

Engineering microbial cell factories have achieved much progress in producing fuels, natural products and bulk chemicals. However, in industrial fermentation, microbial cells often face various predictable and stochastic disturbances resulting from intermediate metabolites or end product toxicity, metabolic burden and harsh environment. These perturbances can potentially decrease productivity and titer.

View Article and Find Full Text PDF

Objectives: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.

Methods: The MRI features were extracted for molecular subgroups by a novel multi-parameter convolutional neural network (CNN) called Bi-ResNet-MB. Then, MR features were used to establish a prognosis model based on XGBoost.

View Article and Find Full Text PDF

Introduction And Hypothesis: This study aims to develop a postpartum stress urinary incontinence (PPSUI) risk prediction model based on an updated definition of PPSUI, using machine learning algorithms. The goal is to identify the best model for early clinical screening to improve screening accuracy and optimize clinical management strategies.

Methods: This prospective study collected data from 1208 postpartum women, with the dataset randomly divided into training and testing sets (8:2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!