We describe a school science outreach initiative that introduced learners to applied nuclear physics research by means of a two-day workshop that involved learners and teachers from 5 schools in the Western Cape province of South Africa. During this workshop, the participants were introduced to the naturally occurring, inert, colorless, and tasteless radioactive gas radon (Rn). During the first day of the workshop, the participants were informed about the detrimental health impacts of inhaling radon and its daughter radionuclides and were shown how indoor radon activity concentrations can be measured using the electret ion chamber (EIC) technology. The learners were then each supplied with a short-term electret (E-PERM, Radelec, Frederick, MD, USA) and associated ion chamber to enable them to make radon measurements in their homes. The teachers in turn were supplied with EICs to enable them make radon measurements in their schools. The participants returned the EICs on the second day of the workshop, one week later. Here, the drop in the potential difference across each electret was measured in order to calculate the average indoor radon activity concentration. A total of 49 indoor radon concentrations were measured. The average indoor radon concentrations were 36 ± 26 Bqm in homes and 41 ± 36 Bqm in schools, while the highest concentration was found to be 144 Bqm. These levels were compared to predictions from a model that uses input information about the uranium content associated with the surface geology at each measurement location. The predictions compared well with the measured values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858671PMC
http://dx.doi.org/10.3390/ijerph20021350DOI Listing

Publication Analysis

Top Keywords

indoor radon
20
schools western
8
western cape
8
science outreach
8
outreach initiative
8
workshop participants
8
radon
8
day workshop
8
radon activity
8
concentrations measured
8

Similar Publications

RADON in a high karst area of Montenegro - A case study.

Appl Radiat Isot

January 2025

School of Applied Mathematics and Informatics, University of Osijek, Trg Ljudevita Gaja 6, Osijek, Croatia.

The national radon surveys in Montenegro revealed that the highest annual average radon concentrations (C) in ground floors of dwellings and schools were found in a rural region characterized as a typical high-karst area. In this region, spanning approximately 800 km, C values in 9 houses and 16 schools ranged from 219 to 2494 Bq/m, with AM = 977 Bq/m. To investigate the causes of these elevated indoor radon concentrations, the following parameters were measured near the 25 surveyed buildings: soil humidity, electrical conductivity, pH, activity concentrations of Ra, U, U, Th and K, radon concentration in soil gas (c), soil permeability for radon gas (k), and gamma dose rate in the air.

View Article and Find Full Text PDF

Radon, a common radioactive indoor air pollutant, is the second leading cause of lung cancer in the United States. Knowledge about its distribution is essential for risk assessment and designing efficient protective regulations. However, the three current radon maps for the United States are unable to provide the up-to-date, high-resolution, and time-varying radon concentrations.

View Article and Find Full Text PDF

Radon Exposure and Gestational Diabetes.

JAMA Netw Open

January 2025

Department of Obstetrics and Gynecology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.

Importance: Understanding environmental risk factors for gestational diabetes (GD) is crucial for developing preventive strategies and improving pregnancy outcomes.

Objective: To examine the association of county-level radon exposure with GD risk in pregnant individuals.

Design, Setting, And Participants: This multicenter, population-based cohort study used data from the Nulliparous Pregnancy Outcomes Study: Monitoring Mothers-to-Be (nuMoM2b) cohort, which recruited nulliparous pregnant participants from 8 US clinical centers between October 2010 and September 2013.

View Article and Find Full Text PDF

Indoor radon is a significant risk factor for the development of LC. This study aimed to identify potential biomarkers for LC risk in high background radiation areas using a metabolomics approach (UHPLC-HRMS). Based on the indoor radon activity concentration measurements in the Kong Khaek subdistrict, serum samples were collected from 45 nonsmoker or former smoker participants, comprising 15 LC patients and 30 matched healthy controls (low- and high-radon groups, respectively).

View Article and Find Full Text PDF

Radon (Rn) and thoron (Rn) were reported as the highest contributors to natural radiation received by humans. Furthermore, radon has been stated as the second-highest cause of lung cancer. The concentrations of U and Th (the parent nuclide of radon and thoron, respectively) in nature vary with geological conditions and can be enhanced by human activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!