Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hempseed protein has become a promising candidate as a future alternative protein source due to its high nutritional value. In the current study, hempseed protein isolate (HPI) was obtained using ultrasonic-assisted extraction with the aim to improve the functionality of HPI via protein structure modification. The solubility of HPI could be improved twofold under 20 kHz ultrasound processing compared to conventional alkaline extraction-isoelectric point precipitation. The protein solubility was gradually enhanced as the ultrasonic power improved, whereas excessive ultrasound intensity would cause a decline in protein solubility. Ultrasonic processing was found to have beneficial effects on the other functionalities of the extracted HPI, such as emulsifying and foaming properties. This improvement can be ascribed to the physical effects of acoustic cavitation that changed the secondary and tertiary structures of the protein to enhance surface hydrophobicity and decrease the particle size of the extracted protein aggregates. In addition, more available thiols were observed in US-treated samples, which could be another reason for improved functionality. However, the results of this study also revealed that prolonged high-power ultrasound exposure may eventually have a detrimental impact on HPI functional properties due to protein aggregation. Overall, this study suggests that high intensity ultrasound can enhance the functionality of HPI, which may ultimately improve its value in HPI-based food products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858475 | PMC |
http://dx.doi.org/10.3390/foods12020348 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!