Aquaphotomics Monitoring of Lettuce Freshness during Cold Storage.

Foods

Aquaphotomics Research Department, Graduate School of Agricultural Science, Kobe University, 1-1, Rokkodai, Nada, Kobe 657-8501, Japan.

Published: January 2023

Fresh-cut leafy vegetables are one of the most perishable products because they readily deteriorate in quality even during cold storage and have a relatively short shelf life. Since these products are in high demand, methods for rigorous quality control and estimation of freshness that are rapid and non-destructive would be highly desirable. The objective of the present research was to develop a rapid, non-destructive near-infrared spectroscopy (NIRS)-based method for the evaluation of changes during cold storage of lettuce using an aquaphotomics approach to monitor the water molecular structure in lettuce leaves. The reference measurements showed that after 6 days of dark, cold storage, the weight and water activity of lettuce leaves decreased and β-carotene decreased, while chlorophylls slightly increased. Aquaphotomics characterization showed large differences in the lettuce leaves' spectra depending on their growth zone. Difference spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) confirmed the differences in the inner and outer leaves and revealed that spectra change as a function of storage time. Partial least squares regression (PLSR) allowed the prediction of the time spent in storage with a coefficient of determination of R = 0.80 and standard error of RMSE = 0.77 days for inner, and R = 0.86 and RMSE = 0.66 days for outer leaves, respectively. The following water absorbance bands were found to provide the most information in the spectra: 1348, 1360, 1373, 1385, 1391, 1410, 1416, 1422, 1441, 1447, 1453, 1466, 1472, 1490, 1503, 1515, 1521, 1534 and 1571 nm. They were further used as water matrix coordinates (WAMACs) to define the water spectral patterns (WASPs) of lettuce leaves. The WASPs of leaves served to succinctly describe the state of lettuces during storage. The changes in WASPs during storage reveled moisture loss, damage to cell walls and expulsion of intracellular water, as well as loss of free and weakly hydrogen-bonded water, all leading to a loss of juiciness. The WASPs also showed that damage stimulated the defense mechanisms and production of vitamin C. The leaves at the end of the storage period were characterized by water strongly bound to collapsed structural elements of leaf tissues, mainly cellulose, leading to a loss of firmness that was more pronounced in the outer leaves. All of this information was reflected in the changes of absorbance in the identified WAMACs, showing that the water molecular structure of lettuce leaves accurately reflects the state of the lettuce during storage and that WASPs can be used as a multidimensional biomarker to monitor changes during storage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858011PMC
http://dx.doi.org/10.3390/foods12020258DOI Listing

Publication Analysis

Top Keywords

cold storage
16
lettuce leaves
16
outer leaves
12
storage
11
water
9
leaves
9
lettuce
8
rapid non-destructive
8
water molecular
8
molecular structure
8

Similar Publications

Adaptive Phase Change Microcapsules for Efficient Sustainable Cooling.

ACS Appl Mater Interfaces

January 2025

School of Artificial Intelligence Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China.

Passive radiative cooling has recently gained significant attention as a highly promising technology that offers a zero-energy and electricity-free solution to tackle the pressing issue of global warming. Nevertheless, research efforts have predominantly focused on enhancing daytime and hot-day radiative cooling efficacy, often neglecting the potential downsides associated with excessive cooling and the consequent increased heating expenses during cold nights and winter days. Herein, we demonstrate a micro-nanostructured engineered composite film that synergistically integrates room-temperature adaptive silica-shell/oil-core phase change microcapsules (S-PCMs) with commercially available cellulose fibers.

View Article and Find Full Text PDF

Ex situ conservation of plant genetic resources (PGR) plays a crucial role in sustainable growth and development, as highlighted by the Global Strategy for Plant Conservation (GSPC). Seed genebanks, a key component of ex situ conservation, have been instrumental in preserving plant diversity. However, challenges arise with the conservation of non-orthodox (recalcitrant and intermediate) seeds and vegetative tissues, which are not amenable to storage in traditional genebanks at temperatures of -20°C.

View Article and Find Full Text PDF

Bimetallic synergy in non-precious metal Mn/Ba-SSZ-13 zeolite for improving NO storage capacity at low temperatures.

J Hazard Mater

January 2025

Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reaction & Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, PR China. Electronic address:

Pd-zeolite is considered one of the most promising passive NO adsorber (PNA) materials for NO purification in diesel vehicles during cold start. Nevertheless, the scarcity and high cost of the precious metal Pd restrict the industrialisation of Pd-zeolites as PNA. This work developed a bimetallic Mn and Ba co-modified SSZ-13 as non-precious metal PNA material.

View Article and Find Full Text PDF

Tissue selective ultrasonic debridement is a new method of debriding chronic wounds that prepares the wound for advanced tissue application. This article presents the case of an 89-year-old woman with a chronic nonhealing wound to her lateral distal leg. The wound had a significant amount of biofilm and fibrous slough.

View Article and Find Full Text PDF

Background: Machine perfusion (MP), including hypothermic oxygenated machine perfusion (HOPE), dual HOPE, normothermic machine perfusion (NMP), NMP ischemia-free liver transplantation (NMP-ILT), and controlled oxygenated rewarming (COR), is increasingly being investigated to improve liver graft quality from extended criteria donors and donors after circulatory death and expand the donor pool. This network meta-analysis investigates the comparative efficacy and safety of various liver MP strategies versus traditional static cold storage (SCS).

Methods: We searched PubMed, Scopus, Web of Science, and Cochrane Controlled Register of Trials for randomized controlled trials (RCTs) comparing liver transplantation (LT) outcomes between SCS and MP techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!