We explore unique considerations involved in fitting machine learning (ML) models to data with very high precision, as is often required for science applications. We empirically compare various function approximation methods and study how they with increasing parameters and data. We find that neural networks (NNs) can often outperform classical approximation methods on high-dimensional examples, by (we hypothesize) auto-discovering and exploiting modular structures therein. However, neural networks trained with common optimizers are less powerful for low-dimensional cases, which motivates us to study the unique properties of neural network loss landscapes and the corresponding optimization challenges that arise in the high precision regime. To address the optimization issue in low dimensions, we develop training tricks which enable us to train neural networks to extremely low loss, close to the limits allowed by numerical precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858077 | PMC |
http://dx.doi.org/10.3390/e25010175 | DOI Listing |
BioData Min
January 2025
Department of Statistics, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
Background: This study employs a LSTM-FC neural networks to address the critical public health issue of child undernutrition in Ethiopia. By employing this method, the study aims classify children's nutritional status and predict transitions between different undernutrition states over time. This analysis is based on longitudinal data extracted from the Young Lives cohort study, which tracked 1,997 Ethiopian children across five survey rounds conducted from 2002 to 2016.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Communication Engineering, School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
The detection of exons is an important area of research in genomic sequence analysis. Many signal-processing methods have been established successfully for detecting the exons based on their periodicity property. However, some improvement is still required to increase the identification accuracy of exons.
View Article and Find Full Text PDFAccurate malaria diagnosis with precise identification of Plasmodium species is crucial for an effective treatment. While microscopy is still the gold standard in malaria diagnosis, it relies heavily on trained personnel. Artificial intelligence (AI) advances, particularly convolutional neural networks (CNNs), have significantly improved diagnostic capabilities and accuracy by enabling the automated analysis of medical images.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Networks and Cybersecurity, Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, Jordan.
Diabetic retinopathy stands as a leading cause of blindness among people. Manual examination of DR images is labor-intensive and prone to error. Existing methods to detect this disease often rely on handcrafted features which limit the adaptability and classification accuracy.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science, Guangdong Polytechnic Normal University, Guangzhou, 510665, China.
With the rapid development of Internet of Things (IoT) technology, embedded devices in various computer vision scenarios can realize real-time target detection and recognition tasks, such as intelligent manufacturing, automatic driving, smart home, and so on. YOLOv8, as an advanced deep learning model in the field of target detection, has attracted much attention for its excellent detection speed, high precision, and multi-task processing capability. However, since IoT embedded devices typically own limited computing resources, direct deployment of YOLOv8 is a big challenge, especially for real-time detection tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!