Network structure provides critical information for understanding the dynamic behavior of complex systems. However, the complete structure of real-world networks is often unavailable, thus it is crucially important to develop approaches to infer a more complete structure of networks. In this paper, we integrate the configuration model for generating random networks into an Expectation-Maximization-Aggregation (EMA) framework to reconstruct the complete structure of multiplex networks. We validate the proposed EMA framework against the Expectation-Maximization (EM) framework and random model on several real-world multiplex networks, including both covert and overt ones. It is found that the EMA framework generally achieves the best predictive accuracy compared to the EM framework and the random model. As the number of layers increases, the performance improvement of EMA over EM decreases. The inferred multiplex networks can be leveraged to inform the decision-making on monitoring covert networks as well as allocating limited resources for collecting additional information to improve reconstruction accuracy. For law enforcement agencies, the inferred complete network structure can be used to develop more effective strategies for covert network interdiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857694PMC
http://dx.doi.org/10.3390/e25010142DOI Listing

Publication Analysis

Top Keywords

multiplex networks
16
complete structure
12
ema framework
12
networks
9
covert networks
8
network structure
8
framework random
8
random model
8
structure
5
framework
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!