This work studies the first-order coherence of noisy multi-agent networks with multi-layered structures. The coherence, which is a sort of performance index of networks, can be seen as a sort of measurement for a system's robustness. Graph operations are applied to design the novel multi-layered networks, and a graph spectrum approach, along with analysis methods, is applied to derive the mathematical expression of the coherence, and the corresponding asymptotic results on the performance index have been obtained. In addition, the coherence of these non-isomorphic multi-layered networks with three different graph parameters are compared and analyzed. We find that, when the cardinalities of the vertex sets of corresponding counterpart layers are the same, the multi-layered topology class with a balanced, complete, multi-partite structure has the best robustness of all the considered networks, if the sufficient conditions for the node-related parameters hold. Finally, simulations are given to verify the asymptotic results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858455 | PMC |
http://dx.doi.org/10.3390/e25010040 | DOI Listing |
F1000Res
June 2024
Department of Mathematics, Rajalakshmi Engineering College, Chennai, Tamil Nadu, 602105, India.
: One of the topics of distance in graphs is the resolving set problem. Suppose the set = { , , …, } ⊂ ( ), the vertex representations of ∈ ( ) is ( | ) = { ( , ), ( , ), …, ( , )}, where ( , ) is the length of the shortest path of the vertex and the vertex in together with their multiplicity. The set is called a local -resolving set of graphs if ( | )≠ ( | ) for ∈ ( ).
View Article and Find Full Text PDFNeural Netw
August 2024
AI Lab, Tencent, Shenzhen, 518000, Guangdong, China. Electronic address:
Given a graph G, the network collapse problem (NCP) selects a vertex subset S of minimum cardinality from G such that the difference in the values of a given measure function f(G)-f(G∖S) is greater than a predefined collapse threshold. Many graph analytic applications can be formulated as NCPs with different measure functions, which often pose a significant challenge due to their NP-hard nature. As a result, traditional greedy algorithms, which select the vertex with the highest reward at each step, may not effectively find the optimal solution.
View Article and Find Full Text PDFComb Chem High Throughput Screen
May 2024
Department of Electrical Engineering, College of Engineering, Qassim University, Unaizah, Saudi Arabia.
Math Biosci Eng
May 2023
Faculty of Mathematics, Autonomous University of Guerrero, Acapulco, Guerrero, Mexico.
A nonempty subset $ D $ of vertices in a graph $ \Gamma = (V, E) $ is said is an , if every vertex $ v \in \partial(D) $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum offensive alliance of $ \Gamma $ is called the $ \alpha ^o(\Gamma) $ of $ \Gamma $. An offensive alliance $ D $ is called , if every $ v \in V - D $ satisfies $ \delta_D(v) \geq \delta_{\overline{D}}(v) + 1 $; the cardinality of a minimum global offensive alliance of $ \Gamma $ is called the $ \gamma^o(\Gamma) $ of $ \Gamma $. For a finite commutative ring with identity $ R $, $ \Gamma(R) $ denotes the zero divisor graph of $ R $.
View Article and Find Full Text PDFPeerJ Comput Sci
February 2023
School of Management, Huazhong University of Science and Technology, Wuhan, China.
Given a directed graph = (), a feedback vertex set is a vertex subset whose removal makes the graph acyclic. The feedback vertex set problem is to find the subset * whose cardinality is the minimum. As a general model, this problem has a variety of applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!