AI Article Synopsis

  • The rapid growth of electronic health records (EHR) and electronic medical records (EMR) provides valuable data for oncologists, but extracting and analyzing this information can be time-consuming for medical professionals.
  • *Recent research has focused on applying natural language processing (NLP) techniques to EHR and EMR data to enhance computer-aided diagnosis in oncology, with the review summarizing 23 relevant studies across different cancer types.
  • *The review also highlights current limitations of NLP in clinical practice and suggests future research directions to bridge the gap between AI developers and cancer specialists.

Article Abstract

In the era of big data, text-based medical data, such as electronic health records (EHR) and electronic medical records (EMR), are growing rapidly. EHR and EMR are collected from patients to record their basic information, lab tests, vital signs, clinical notes, and reports. EHR and EMR contain the helpful information to assist oncologists in computer-aided diagnosis and decision making. However, it is time consuming for doctors to extract the valuable information they need and analyze the information from the EHR and EMR data. Recently, more and more research works have applied natural language processing (NLP) techniques, i.e., rule-based, machine learning-based, and deep learning-based techniques, on the EHR and EMR data for computer-aided diagnosis in oncology. The objective of this review is to narratively review the recent progress in the area of NLP applications for computer-aided diagnosis in oncology. Moreover, we intend to reduce the research gap between artificial intelligence (AI) experts and clinical specialists to design better NLP applications. We originally identified 295 articles from the three electronic databases: PubMed, Google Scholar, and ACL Anthology; then, we removed the duplicated papers and manually screened the irrelevant papers based on the content of the abstract; finally, we included a total of 23 articles after the screening process of the literature review. Furthermore, we provided an in-depth analysis and categorized these studies into seven cancer types: breast cancer, lung cancer, liver cancer, prostate cancer, pancreatic cancer, colorectal cancer, and brain tumors. Additionally, we identified the current limitations of NLP applications on supporting the clinical practices and we suggest some promising future research directions in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9857980PMC
http://dx.doi.org/10.3390/diagnostics13020286DOI Listing

Publication Analysis

Top Keywords

computer-aided diagnosis
16
ehr emr
16
diagnosis oncology
12
nlp applications
12
natural language
8
language processing
8
applications computer-aided
8
emr data
8
cancer
7
ehr
5

Similar Publications

This study proposes a hierarchical automated methodology for detecting brain tumors in Magnetic Resonance Imaging (MRI), focusing on preprocessing images to improve quality and eliminate artifacts or noise. A modified Extreme Learning Machine is then used to diagnose brain tumors that are integrated with the Modified Sailfish optimizer to enhance its performance. The Modified Sailfish optimizer is a metaheuristic algorithm known for efficiently navigating optimization landscapes and enhancing convergence speed.

View Article and Find Full Text PDF

Background: Perilunate/lunate injuries are frequently misdiagnosed. We hypothesize that utilization of a machine learning algorithm can improve human detection of perilunate/lunate dislocations.

Methods: Participants from emergency medicine, hand surgery, and radiology were asked to evaluate 30 lateral wrist radiographs for the presence of a perilunate/lunate dislocation with and without the use of a machine learning algorithm, which was used to label the lunate.

View Article and Find Full Text PDF

Background: Complexity and signal recurrence metrics obtained from body surface potential mapping (BSPM) allow quantifying atrial fibrillation (AF) substrate complexity. This study aims to correlate electrocardiographic imaging (ECGI) detected reentrant patterns with BSPM-calculated signal complexity and recurrence metrics.

Methods: BSPM signals were recorded from 28 AF patients (17 male, 11 women, 62.

View Article and Find Full Text PDF

Digital pathology is now a standard component of the pathology workflow, offering numerous benefits such as high-detail whole slide images and the capability for immediate case sharing between hospitals. Recent advances in deep learning-based methods for image analysis make them a potential aid in digital pathology. However, A significant challenge in developing computer-aided diagnostic systems for pathology is the lack of intuitive, open-source web applications for data annotation.

View Article and Find Full Text PDF

Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!