ADGR: Admixture-Informed Differential Gene Regulation.

Genes (Basel)

Computational Health Informatics Program, Boston Children's Hospital, Boston, MA 02215, USA.

Published: January 2023

The regulatory elements in proximal and distal regions of genes are involved in the regulation of gene expression. Risk alleles in intronic and intergenic regions may alter gene expression by modifying the binding affinity and stability of diverse DNA-binding proteins implicated in gene expression regulation. By focusing on the local ancestral structure of coding and regulatory regions using the paired whole-genome sequence and tissue-wide transcriptome datasets from the Genotype-Tissue Expression project, we investigated the impact of genetic variants, in aggregate, on tissue-specific gene expression regulation. Local ancestral origins of the coding region, immediate and distant upstream regions, and distal regulatory region were determined using RFMix with the reference panel from the 1000 Genomes Project. For each tissue, inter-individual variation of gene expression levels explained by concordant or discordant local ancestry between coding and regulatory regions was estimated. Compared to European, African descent showed more frequent change in local ancestral structure, with shorter haplotype blocks. The expression level of the Adenosine Deaminase Like ( gene was significantly associated with admixed ancestral structure in the regulatory region across multiple tissue types. Further validations are required to understand the impact of the local ancestral structure of regulatory regions on gene expression regulation in humans and other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859415PMC
http://dx.doi.org/10.3390/genes14010147DOI Listing

Publication Analysis

Top Keywords

gene expression
24
local ancestral
16
ancestral structure
16
expression regulation
12
regulatory regions
12
gene
8
expression
8
coding regulatory
8
regulatory region
8
structure regulatory
8

Similar Publications

The HAK/KUP/KT (High-affinity K transporters/K uptake permeases/K transporters) is the largest and most dominant potassium transporter family in plants, playing a crucial role in various biological processes. However, our understanding of HAK/KUP/KT gene family in potato ( L.) remains limited and unclear.

View Article and Find Full Text PDF

The wall-associated kinase (WAK) gene family encodes functional cell wall-related proteins. These genes are widely presented in plants and serve as the receptors of plant cell membranes, which perceive the external environment changes and activate signaling pathways to participate in plant growth, development, defense, and stress response. However, the WAK gene family and the encoded proteins in soybean (Glycine max (L.

View Article and Find Full Text PDF

The methylation- demethylation dynamics of RNA plays major roles in different biological functions, including stress responses, in plants. mA methylation in RNA is orchestrated by a coordinated function of methyl transferases (writers) and demethylases (Erasers). Genome-wide analysis of genes involved in methylation and demethylation was performed in pigeon pea.

View Article and Find Full Text PDF

Implication of fibroblast growth factor 7 in ovarian cancer metastases and patient survival.

Front Oncol

January 2025

Gynecologic Oncology Section, Stephenson Cancer Center, Obstetrics and Gynecology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.

Background/objectives: Patients with ovarian cancer commonly experience metastases and recurrences, which contribute to high mortality. Our objective was to better understand ovarian cancer metastasis and identify candidate biomarkers and drug targets for predicting and preventing ovarian cancer recurrence.

Methods: Transcripts of 770 cancer-associated genes were compared in cells collected from ascitic fluid versus resected tumors of an ES-2 orthotopic ovarian cancer mouse model.

View Article and Find Full Text PDF

A Prognostic Riskscore Model Related to Infection in Stomach Adenocarcinoma.

Int J Genomics

January 2025

Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing Key Laboratory of Emergency Medicine, Chongqing, China.

() is associated with the development of various stomach diseases, one of the major risk factors for stomach adenocarcinoma (STAD). The infection score between tumor and normal groups was compared by single-sample gene set enrichment analysis (ssGSEA). The key modules related to infection were identified by weighted gene coexpression network analysis (WGCNA), and functional enrichment analysis was conducted on these module genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!