The DNA Damage Response (DDR) pathways sense DNA damage and coordinate robust DNA repair and bypass mechanisms. A series of repair proteins are recruited depending on the type of breaks and lesions to ensure overall survival. An increase in glucose levels was shown to induce genome instability, yet the links between DDR and glucose are still not well investigated. In this study, we aimed to identify dysregulation in the transcriptome of normal and cancerous breast cell lines upon changing glucose levels. We first performed bioinformatics analysis using a microarray dataset containing the triple-negative breast cancer (TNBC) MDA-MB-231 and the normal human mammary epithelium MCF10A cell lines grown in high glucose (HG) or in the presence of the glycolysis inhibitor 2-deoxyglucose (2DG). Interestingly, multiple DDR genes were significantly upregulated in both cell lines grown in HG. In the wet lab, we remarkably found that HG results in severe DNA damage to TNBC cells as observed using the comet assay. In addition, several DDR genes were confirmed to be upregulated using qPCR analysis in the same cell line. Our results propose a strong need for DDR pathways in the presence of HG to oppose the severe DNA damage induced in cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858638PMC
http://dx.doi.org/10.3390/genes14010144DOI Listing

Publication Analysis

Top Keywords

dna damage
20
ddr genes
12
cell lines
12
high glucose
8
multiple ddr
8
ddr pathways
8
glucose levels
8
lines grown
8
severe dna
8
dna
6

Similar Publications

Recent research has demonstrated that activating the cGAS-STING pathway can enhance interferon production and the activation of T cells. A manganese complex, called TPA-Mn, was developed in this context. The reactive oxygen species (ROS)-sensitive nanoparticles (NPMn) loaded with TPA-Mn are developed.

View Article and Find Full Text PDF

DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.

View Article and Find Full Text PDF

Background: Disturbances in DNA damage repair may lead to cancer. SIRT1, an NAD+-dependent deacetylase, plays a crucial role in maintaining cellular homeostasis through the regulation of processes such as histone posttranslational modifications, DNA repair, and cellular metabolism. However, a comprehensive exploration of SIRT1's involvement in pan-cancer remains lacking.

View Article and Find Full Text PDF

We present a study of rare germline predisposition variants in 954 unrelated individuals with multiple myeloma (MM) and 82 MM families. Using a candidate gene approach, we identified such variants across all age groups in 9.1% of sporadic and 18% of familial cases.

View Article and Find Full Text PDF

This article aims to develop and validate a pathological prognostic model for predicting prognosis in patients with isocitrate dehydrogenase (IDH)-mutant gliomas and reveal the biological underpinning of the prognostic pathological features. The pathomic model was constructed based on whole slide images (WSIs) from a training set ( = 486) and evaluated on internal validation set ( = 209), HPPH validation set ( = 54), and TCGA validation set ( = 352). Biological implications of PathScore and individual pathomic features were identified by pathogenomics set ( = 100).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!