MicroRNAs (miRNAs and miRs) are small (19-25 base pairs) non-coding RNAs with the ability to modulate gene expression. Previously, we showed that the miR-34 family is downregulated in multiple myeloma (MM) as the cancer progressed. In this study, we aimed to clarify the mechanism of miRNA dysregulation in MM. We focused particularly on the interaction between MYC and the TP53-miR34 axis because there is a discrepancy between increased TP53 and decreased miR-34 expressions in MM. Using the nutlin-3 or Tet-on systems, we caused wild-type (WT) p53 protein accumulation in human MM cell lines (HMCLs) and observed upregulated miR-34 expression. Next, we found that treatment with an Myc inhibitor alone did not affect miR-34 expression levels, but when it was coupled with p53 accumulation, miR-34 expression increased. In contrast, forced MYC activation by the MYC-ER system reduced nutlin-3-induced miR-34 expression. We also observed that TP53 and MYC were negatively correlated with mature miR-34 expressions in the plasma cells of patients with MM. Our results suggest that MYC participates in the suppression of p53-dependent miRNA expressions. Because miRNA expression suppresses tumors, its inhibition leads to MM development and malignant transformation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9859619 | PMC |
http://dx.doi.org/10.3390/genes14010100 | DOI Listing |
Mol Biol Rep
December 2024
Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
Introduction: Cataranthine is an alkaloid used in the development of anti-cancer drugs. In this study, the effect of cataranthine is assessed by measuring the levels of miR-34 and miRNA-29, which are effective regulators of BCL-2 and NRF-2 gene expression, and their relation to the survival of HCC cells.
Methods: This study used cataranthine, and the HepG2 cell line.
Gene
February 2025
Departments of Physiology, University of Toronto, Ontario, Canada; Departments of Medicine, University of Toronto, Ontario, Canada. Electronic address:
Obesity is a complex disease marked by increased adiposity and impaired metabolic function. While diet and lifestyle are primary causes, endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), significantly contribute to obesity. BPA, found in plastic consumer products, accumulates in the hypothalamus and dysregulates energy homeostasis by disrupting the neuropeptide Y (NPY)/agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) neurons.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
January 2025
Center for Molecular Medicine & Genetics, The Wayne State University School of Medicine, Detroit, Michigan, United States.
Inhalation exposure to airborne fine particulate matter (aerodynamic diameter: <2.5 µm, PM) is known to cause metabolic dysfunction-associated steatohepatitis (MASH) and the associated metabolic syndrome. Hepatic lipid accumulation and inflammation are the key characteristics of MASH.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Emergency Department, Minhang Hospital, Fudan University, 170 Xinsong Road, Minhang District, Shanghai 201199, PR China. Electronic address:
Acute pulmonary embolism (APE)-induced pulmonary artery hypertension (PAH) is a fatal disease. The miR-34-3p/DUSP1 has inhibitory effects on the thickening of the pulmonary arterial walls in APE rats and the proliferation of platelet-derived growth factor-BB (PDGF-BB)-induced human pulmonary arterial smooth muscle cells (hPASMCs). Herein, the lncRNAs regulating the miR-34a-3p/DUSP1 axis in APE and PAH are further explored in vitro and in vivo.
View Article and Find Full Text PDFInt J Med Sci
November 2024
Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
MicroRNAs (miRNAs)-based therapies hold great promise for cancer treatment, challenges such as expression variability, off-target effects, and limited clinical effectiveness have led to the withdrawal of many clinical trials. This review investigates the setbacks in miRNA-based therapies by examining miR-21, miR-34, and miR-155, highlighting their functional complexity, off-target effects, and the challenges in delivering these therapies effectively. Moreover, It highlights recent advances in delivery methods, combination therapies, and personalized treatment approaches to overcome these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!