Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although genetics affects early childhood caries (ECC) risk, few studies have focused on finding its specific genetic determinants. Here, we performed genome-wide association studies (GWAS) in five cohorts of children (aged up to 5 years, total N = 2974, cohorts: Center for Oral Health Research in Appalachia cohorts one and two [COHRA1, COHRA2], Iowa Fluoride Study, Iowa Head Start, Avon Longitudinal Study of Parents and Children [ALSPAC]) aiming to identify genes with potential roles in ECC biology. We meta-analyzed the GWASs testing ~3.9 million genetic variants and found suggestive evidence for association at genetic regions previously associated with caries in primary and permanent dentition, including the β-defensin anti-microbial proteins. We then integrated the meta-analysis results with gene expression data in a transcriptome-wide association study (TWAS). This approach identified four genes whose genetically predicted expression was associated with ECC (p-values < 3.09 × 10−6; CDH17, TAS2R43, SMIM10L1, TAS2R14). Some of the strongest associations were with genes encoding members of the bitter taste receptor family (TAS2R); other members of this family have previously been associated with caries. Of note, we identified the receptor encoded by TAS2R14, which stimulates innate immunity and anti-microbial defense in response to molecules released by the cariogenic bacteria, Streptococcus mutans and Staphylococcus aureus. These findings provide insight into ECC genetic architecture, underscore the importance of host-microbial interaction in caries risk, and identify novel risk genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9858612 | PMC |
http://dx.doi.org/10.3390/genes14010059 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!